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Pioneering BEVALAC
experiments
plastic Ball 1980’s
aimed at collective flow

“A striking difference between Ca and Nb

the distribution of the flow angles

®
for the Ca data is peaked at 0 deg. [
For Nb there is a finite deflection angle” b
new collective phenomenon Z
not accounted
for by the present cascade models.”

“hydrodynamical prediction of the flow angle

seems to be qualitatively in agreement
with the measurement
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negative v2 is due to shadowing by
spectator matter

At AGS/SPS the elliptic flow changes sign!
It grows with p_t and yet it remains small
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At AGS/SPS the elliptic flow changes sign!
It grows with p_t and yet it remains small
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Flow at the SPS and RHIC as a quark gluon plasma signature
D. Teaney, J. Lauret, Edward V. Shuryak (Nov, 2000)
Phys.Rev.Lett. 86 (2001) 4783-4786 ® e-Print: nucl-th/0011058

contrary to predictions of cascades (RQMD,URQMD)
elliptic flow at RHIC should be much stronger
because matter is not hadronic but QGP !


https://inspirehep.net/literature/537062
https://inspirehep.net/authors/1020941
https://inspirehep.net/authors/1019325
https://inspirehep.net/authors/988810
https://arxiv.org/abs/nucl-th/0011058
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2/ecc

2001-2005: hydro describes radial and elliptic flows for all

secondaries , pt<2GeV, centralities, rapidities, A (Cu,Au)...
Experimentalists were very sceptical but were
convinced and near-perfect liquid” is now official,

=>AIP declared this to be discovery #1 of 2005 in physics
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describes SPS data as

well! It does so because of

the correct hadronic

matter /freezout via
(RQMD)

note that we did not dare

to calculate beyond 1.7 GeV or so



the acoustic systematics works!

dependence on n
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Shuryak,Staig,2011

a frozen sound wave
on top of Gubser flow “horns” where sounds

“go ashore”
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Left:4 pi eta/s=0, 2
Note shape change

this result has been
reported at QM11
before the data
were presented
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Note shape change

|

dN/dA®

A¢ (rad)

angular diameter
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dN/dA¢
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the spectrum of azimuthal harmonics
data from ATLAS coll show the effect of viscous damping
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the spectrum of azimuthal harmonics

data from ATLAS coll show the effect of viscous damping | ALICE, 2020
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the spectrum of azimuthal harmonics
show the effect of viscous damping
4much6 more clealtz)ly

ALICE, 2020

data from ATLAS coll

yes, the minimum seems to be there
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the spectrum of azimuthal harmonics
show the effect of viscous damping
4much6 more clealtz)ly

ALICE, 2020

data from ATLAS coll

yes, the minimum seems to be there
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Perturbations of
the Big and the
Little Bangs

Frozen sound (from the era long
gone) is seen on the sky, both in

CMB and in distribution of Galaxies

AT
1

lmamimum ~ 210

5¢ N zﬂ/lmaximum ~ 1°

They are remnants of the sound
circles on the sky, around the

primordial density perturbations
Freezeout time O(100000) years

~ 107°

Initial state fluctuations
in the positions of participant nucleons

lead to perturbations of the Little
Bang also

AT
1

~ 107? *

Freezeout time about 12 fm/c
Radius of the circle about 6 fm,
Comparable to the fireball size

PHYSICAL REVIEW C 80, 054908 (2009)

Fate of the initial state perturbations in heavy ion collisions

Edward Shuryak
Department of Physics and Astronomy, State University of New York, Stony Brook, New York 11794, USA
(Received 20 July 2009; revised manuscript received 14 October 2009; published 13 November 2009)



ACOUSTIC PEAK SEEN ON THE SKY,

ON CMB and galaxy distribution
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Fig. 9.— The temperature (TT) and temperature-polarization(TE) power spectra for the

seven-year WNMAP data set. The solid lines show the predicted spectrum for the best-fit flat
ACDM model. The error bars on the data points represent measurement errors while the

shaded region indicates the uncertainty in the model spectrum arising from cosmic variance.

The model parameters are:

QA% = 0.02260 = 0.00053, Q2. .A% = 0.1123 == 0.0035, Q2 =

0.72819:912, . = 0.963 = 0.012, 7 = 0.087 &= 0.014 and og = 0.809 4= 0.024.

DETECTION OF THE BARYON ACOUSTIC PEAK IN THE LARGE-SCALE
CORRELATION FUNCTION OF SDSS LUMINOUS RED GALAXIES

DANIEL J. EISENSTEIN"?, IDIT ZEHAVI', DAVID W. HocG?, ROMAN SCOCCIMARRO®, MICHAEL R.
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S. HENDRY ', GREGORY HENNESsY'?, ZELJkO IVEzIGY, STEPHEN KENT'?, GiLLiAN R. Knapp!'!,
Huan LiIN'Y, YEONG-SHANG Lon?’, RoBERT H. LupTOoN'!, BRUCE MARGON?!, TIMOTHY A.
McKAay??, AVERY MEIKSIN??| JEFFERY A. MUNN'!?, ADRIAN PoPE'®, M1iCcHAEL W. RICHMOND??,
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Fic. 3.— As Figure 2, but plotting the correlation function times
s2. This shows the variation of the peak at 20h—! Mpc scales that is
controlled by the redshift of equality (and hence by ,,h?). Vary-
ing €,,h? alters the amount of large-to-small scale correlation, but
boosting the large-scale correlations too much causes an inconsis-
tency at 30h~! Mpc. The pure CDM model (magenta) is actually
close to the best-fit due to the data points on intermediate scales.



The stages of Big Bang to be mentioned

neutralization of plasma
production of CMB
T(then) about 1 eV
T(now) =2.7K

t(CMB) about 1025 years -
QCD phase transition

(no confinement and hadrons
for T<Tc=155 MeV

CtQCD ~ 10km

tocp ~ 10" *sec .y s
electroweak phase transition

(no Higgs VEV at T<Tc)
Tc =160 GeV

tew ~0.9-10" s, ctpw ~2.7mm




Gravity waves generated by sounds from bi hase transitions

Tigran Kalaydzhyan Edward Shuryak
Phys.Rev.D 91 (2015) 8, 083502 ¢ e-Print: 1412.5147

 QGP is transparent to dileptons/photons, Early
Universe is likewise transparent to gravity waves (GW).
Can those be used as “penetrating probes™?

* long wave sounds, once produced, have very long
fetime. What are their interactions”? Cascades?

 Can they be converted by the reaction
sound+sound=> GW during this long time” What is the
expected amplitude?

- at what frequencies and how one can observe it?


https://inspirehep.net/literature/1334498
https://inspirehep.net/authors/1071436
https://inspirehep.net/authors/988810
https://arxiv.org/abs/1412.5147

Gravity waves are the only
penetrating probes of the Big Bang

fraction of the GW
energy density to total
radiated from thermal particles
it just thermal radiation
not observable!

from Friedmann egns
for radiation-dominated era

macro-to-micro factor is very large,
but it cannot cancel smallness of the coupling:

perhaps other mechanism
of GW generation can do better!



cascade of phonons leads to so called
inverse (toward IR, small k) turbulent cascade
which has stationary attractor solution known as

Kolmogorov-Zakharov power spectra

it aA2>0, decays possible

ng ~ k—s) Sdecay — 9/2 T > < ks

if it Is negative
and decays impossible
Snondecay — 10/37 11/3 then 2<->2 Scat’[ering

scenario 2: nodecay




cascade of phonons leads to so called
inverse (toward IR, small k) turbulent cascade
which has stationary attractor solution knownj=E1gi ks atmosphere also has

Kolmogorov-Zakharov power spectra inverse cascade,
In which small vortices

if aA2>0, decays possible add up toward IR
e ~ k™, Sgeeay = 9/2 Ik end o_f the _spectrum
k T~k creating big stroms

e at a cutoff scale R,

and decays impossible thousands of km

Snondecay — 10/37 11/3 then 2<->2 Sca’[’[ering

Can similar cascade
goes In early Universe
up to horizon scale?




Inverse acoustic cascade and gravitational wave production

Gravity waves generated by sounds from bi hase transitions

Tigran Kalaydzhyan Edward Shuryak
Phys.Rev.D 91 (2015) 8, 083502 ¢ e-Print: 1412.5147

under certain conditions specified, TWO PHONONS IN THE LOOP

Inverse acoustic turbulent cascade develops .

producing a “large-scale storm” till K
phonon+phonon=> graviton

a cutoff at horizon

—
= L A P -
B v . _A-_‘.‘ P BRI OO o € o

w = (c¢/V3)k


https://inspirehep.net/literature/1334498
https://inspirehep.net/authors/1071436
https://inspirehep.net/authors/988810
https://arxiv.org/abs/1412.5147

Inverse acoustic cascade and gravitational wave production

Gravity waves generated by sounds from bi hase transitions

Tigran Kalaydzhyan Edward Shuryak
Phys.Rev.D 91 (2015) 8, 083502 ¢ e-Print: 1412.5147

. .y . P1
under certain conditions specified, —~JTWO PHONONS IN THE LOOP
inverse acoustic turbulent cascade develops i . o
K K

producing a “large-scale storm” till
a cutoff at horizon

GrvY /d4x d*y eik“(xa_ya)<T“”(x)T”/”/ (1)) -

Collisions of two sound waves leads t0 [k Sl I UL

direct production of gravity waves w = ck
IN THE CASE OF QCD TRANSITION

w = (c¢/V3)k

THE CHARACTERISTIC TIME IS 1 YEAR
perhaps recently discovered


https://inspirehep.net/literature/1334498
https://inspirehep.net/authors/1071436
https://inspirehep.net/authors/988810
https://arxiv.org/abs/1412.5147

Are the GW from the QCD phase
transition era observable”? How"?

ol B 3" 10/ 7s=1 year

redshift z =7.6*(10"M11).




Are the GW from the QCD phase
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Are the GW from the QCD phase

transition era observable” How?
time 4 10N-5 s

redshift z =7.6*(10"M11). 3"10M7s=1 year

SO It cannot be observed by conventional
GW detectors such as LEGO or space-based eLISA
since they have completely different frequencies

But GW in this frequency range can
be observed by monitoring pulsar phases.
GR effectively are seen as stochastic change of the
distance to pulsars. There are three ongoing experiments

European Pulsar Timing Array
Parkes Pulsar Timing Array
North American Nanohertz Observatory for Gravitational Waves.



http://en.wikipedia.org/wiki/Parkes_Pulsar_Timing_Array
http://en.wikipedia.org/wiki/North_American_Nanohertz_Observatory_for_Gravitational_Waves

sources and sensitivity
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QCD and EW phase transitions

http://www.ast.cam.ac.uk/~rhc26/sources/



the idea of the pulsar
method: angular correlations

there about 200
millisecond pulsars
discovered
(2013 was a record year)
30000 in Galaxy estimated

when GW ftalls
normal to the page

It Earth is in GW
and say R1 slightly
iIncreases, then R2

at 90 degrees decreases

IS shorter

0

-
804 is longer

observer correlates phase

timing of all known millisec pulsar pairs




Searching for Gravitational Waves from
Cosmological Phase Transitions

with the NANOGrav 12.5-Year Dataset,
NANOGRAV collaboration,
arxiv 2104.13930
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FIG. 2. Maximum likelihood GWB fractional energy-density
spectrum for the BO (red) and SWO (blue) analyses com-
pared with the marginalized posterior for the free power
spectrum (independent per-frequency characterization; red
violin plot) derived in NG12gwhb. For the BO analysis we
show the results derived by using the envelope (solid line),
semi-analytic (dashed), and numerical (dot-dashed) spectral
shapes. For the BO analyses the values of (au.,Tx) for these
maximum likelihood spectra are (0.28,0.7 MeV) for the enve-
lope results, (1.2,3.4MeV) for the semi-analytic results, and
(0.13,14.1 MeV) for the numerical results. While for the SO
analysis we get (6.0,0.32MeV).
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lope results, (1.2,3.4MeV) for the semi-analytic results, and
(0.13,14.1 MeV) for the numerical results. While for the SO
analysis we get (6.0,0.32MeV).



summary

Sounds of the Little Bang:
. are observed as azimuthal correlations
« ‘“acoustic systematics” for harmonics of flow
. phase factor should produce oscillations
. they are well seen in Big Bang CMB

e predicted minimum at n about 7 seems to be there

-+ Sounds in the Big Bang

-+ Very long wavelength sound — limited by horizon

only — have negligible dissipation: so complicated
acoustic inverse cascade can take place: power
spectra of the sound all the way to the IR

- The penetrating probe for Big Bang are gravity

waves.

- Two sound waves on shell can produce one on shell

GW. QCD transitions IR scale today is 1 year (hours).

- Pulsar timing /correlations have recently seen gravity

waves at 1 year period range



