Flow from RHIC to the LHC

Symposium on collective flow in nuclear matter: a celebration of Art Poskanzer's life and career

Raimond Snellings | Berkeley | 9-12-2022

Nikhef

Flow from RHIC to the LHC

Color by Roberta Weir

Raimond Snellings | Berkeley | 9-12-2022

Exploring the secrets of the universe

Art Poskanzer

RQMD

HIJING

we only need the momenta of the charged hadrons and thus anisotropic flow could be one of the first results from STAR. For future analyses it would be good to have particle identification.

Raimond Snellings | Berkeley | 9-12-2022

R.J.M.Snellings, A.M. Poskanzer and S.A. Voloshin (STAR Note SN388) nucl-ex/9904003

Anisotropic Flow (pre-RHIC)

RHIC Winter Workshop at LBNL

Flow

• Radial:

- □ Will (continue to) be a very large effect
- Essential component to understanding spectra at RHIC.
- Directed:
 - □ Already small at SPS
 - □ Almost irrelevant at RHIC
- Elliptic:
 - Zero for truly central events (at any energy)
 - □ Is it
 - A necessary evil for understanding events with nonzero impact parameter?
 - Or
 - An essential tool to our understanding of EoS+(time evolution) of (non-isotropic) initial conditions?
 - My <u>prejudice:</u> Effects of elliptic flow will be small at RHIC

09-Jan-98

Raimond Snellings | Berkeley | 9-12-2022

Day-1 physics at RHIC

Again, learn from the past: **First CDF publication:** Transverse-Momentum **Distributions of Charged Particles Produced in p-pbar** Interactions at 630 and 1800 GeV, F. Abe et al., Phys. Rev. Lett. 61, 1819 (1988).

- ~One year from data-taking.
- Much simpler final state!
- We will be hard-pressed to reach this goal
- And much harder-pressed to maintain "CDF-like" rate

HYSICAL REVIEW LETTERS

s of Charged Particles Produced in 5

09-Jan-98

W.A. Zaje

R.J.M.Snellings, A.M. Poskanzer and S.A. Voloshin (STAR Note SN388) nucl-ex/9904003

4

Relativistic Heavy Ion Collider (RHIC) Begins **Smashing Atoms**

Experiments will yield insights into the structure of matter and how the universe evolved

June 13, 2000

I am sure people here have pictures of these plots from the door of Art's office

Raimond Snellings | Berkeley | 9-12-2022

STAR (2000)

5

in good agreement for midcentral collisions with "hydro"

Raimond Snellings | Berkeley | 9-12-2022

STAR (2001)

big increase measured compared to predictions hadron cascade model(s)

STAR Collaboration: Phys.Rev.Lett. 86 (2001) 402-407

in good agreement for midcentral collisions with "hydro"

Raimond Snellings | Berkeley | 9-12-2022

STAR Collaboration: Phys.Rev.Lett. 86 (2001) 402-407, Phys.Rev.Lett. 87 (2001) 182301

STAR (2001)

Behaves like a system with common temperature and flow boost

STAR (2001)

Raimond Snellings | Berkeley | 9-12-2022

Collective phenomena in non-central nuclear collisions

Sergei A. Voloshin, Arthur M. Poskanzer, and Raimond Snellings

Raimond Snellings | Berkeley | 9-12-2022 S. Voloshin, A. Poskanzer, R. Snellings: Landolt-Bornstein 23 (2010) 293-333 e-Print: 0809.2949

Collective Phenomena

Contents

Collective phenomena in non-central nuclear collisions									
October 22, 2018 Draft									
1 Introduction									
	1 Introduction								
	1.1 Unique observable				5				
	narticinant planes				4				
	2	Experimental methods							
	-	2.1	Event pla	ne method	5				
		2.2	Two and	many particle correlations	8				
		2.3	<i>a</i> -distributions Lee-Yang Zeros Ressel and Fourie						
		2.0	transforms						
		2.4	Methods comparison: sensitivity to nonflow and flow						
			fluctuations						
	3	Anisot	Anisotropic flow: results and physics						
	3.1 General			17					
			3.1.1	Interplay of anisotropic and radial flow	19				
			3.1.2	Flow amplification by coalescence	20				
		3.2 Directed flow		flow	21				
			3.2.1	Physics of directed flow	21				
			3.2.2	System size and energy dependence;					
				extended longitudinal scaling	23				
		3.3	Elliptic fl	OW	24				
			3.3.1	In-plane elliptic flow	24				
			3.3.2	Low density and ideal hydro limits, v_2/ε plot.	26				
			3.3.3	Viscous effects	28				
			3.3.4	Initial eccentricity and v_2 fluctuations	32				
			3.3.5	(Pseudo)rapidity dependence	34				
			3.3.6	Low p_T region: mass splitting	36				
			3.3.7	Constituent quark number scaling	38				
			3.3.8	High p_T region	42				
			3.3.9	Rare probes	46				
		3.4	Higher ha	armonics	48				
	4	Conclusion and outlook							
	5	5 Acknowledgments							
	Refer	prences							

Experimental Methods

Exploring the secrets of the universe

Color by Roberta Weir

Raimond Snellings | Berkeley | 9-12-2022

Art Poskanzer

Quality Control

Art Poskanzer

Moral

- **Every new analysis needs to be done by** two independent people
- **Everybody makes mistakes**
 - Double check everything
 - Persevere to find the mistakes
 - Be open about correcting them

Raimond Snellings | Berkeley | 9-12-2022

Experimental Methods

Generating function cumulants N. Borghini, P.M. Dinh, and J.-Y. Ollitrault, PRC 64, 054901 (2001)

Direct 4-Particle Cumulant

- **Direct means not using a generating function**
- Four nested loops take too much computer time
- Sergei devised a shortcut
- Paul programmed it, Navneet calculated
- **Dhevan Gangadharan programmed v_2{4}(p_t)**
- I convinced Dhevan to also do the integrated cumulant
- **Done by Ante Bilandzic of ALICE**
- Navneet used Year4, Dhevan Year7
- I convinced Dhevan to also do Year4

Flow analysis with cumulants: direct calculations

Ante Bilandzic,^{1,2} Raimond Snellings,² and Sergei Voloshin³

¹Nikhef, Science Park 105, 1098 XG Amsterdam, The Netherlands ² Utrecht University, P.O. Box 80000, 3508 TA Utrecht, The Netherlands ³Wayne State University, 666 W. Hancock Street, Detroit, MI 48201, USA (Dated: October 18, 2011)

11

Experimental Methods

,

$v_n(p_t, y) = \langle \cos[n(\varphi - \Psi_{RP})] \rangle$

 $\langle \langle e^{i2(\varphi_1 - \varphi_2)} \rangle \rangle = \langle \langle e^{i2(\varphi_1 - \Psi_{\rm RP} - (\varphi_2 - \Psi_{\rm RP}))} \rangle \rangle$

$$= \langle \langle e^{i2(\varphi_1 - \Psi_{\rm RP})} \rangle \langle e^{-i2(\varphi_2 - \Psi_{\rm RP})} \rangle + \delta_2 \rangle$$
$$= \langle v_2^2 + \delta_2 \rangle,$$

$$c_{2}\{2\} \equiv \left\langle \left\langle e^{i2(\varphi_{1}-\varphi_{2})} \right\rangle \right\rangle = \left\langle v_{2}^{2}+\delta_{2} \right\rangle.$$

$$c_{2}\{4\} \equiv \left\langle \left\langle e^{i2(\varphi_{1}+\varphi_{2}-\varphi_{3}-\varphi_{4})} \right\rangle \right\rangle - 2\left\langle \left\langle e^{i2(\varphi_{1}-\varphi_{2})} \right\rangle \right\rangle^{2}$$

$$= \left\langle v_{2}^{4}+\delta_{4}+4v_{2}^{2}\delta_{2}+2\delta_{2}^{2} \right\rangle - 2\left\langle v_{2}^{2}+\delta_{2} \right\rangle^{2},$$

$$= \left\langle -v_{2}^{4}+\delta_{4} \right\rangle.$$

Fluctuations

 $\langle v_2^2 \rangle = \langle v_2 \rangle^2 + \sigma^2$ if $\sigma \ll \langle v \rangle$ then $v_2\{2\} = \langle v_2 \rangle + \frac{1}{2} \frac{\sigma^2}{\langle v_2 \rangle},$ $v_2\{4\} = \langle v_2 \rangle - \frac{1}{2} \frac{\sigma^2}{\langle v_2 \rangle},$

 $v_2\{6\} = \langle v_2 \rangle - \frac{1}{2} \frac{\sigma^2}{\langle v_2 \rangle}.$

S. Voloshin, A. Poskanzer, R. Snellings: Landolt-Bornstein 23 (2010) 293-333 e-Print: 0809.2949

Art QM 2008 Jaipur

Figure 1: (Color online) The values of v_2 from various analysis methods vs centrality. Both the upper lines [3] and the lower line [12] are STAR data.

Raimond Snellings | Berkeley | 9-12-2022

Experimental Methods

(%) ⟨⁰/₂ √ **4**[**3** ★ v2EP_PP v2RanSub_PP ▼ v2EtaSub_PP ▲ v22_PP • v2LYZ_PP 70 80 60 50 10 % Most Central

Figure 2: (Color online) The data from Fig. 1 corrected to $\langle v_2 \rangle$ in the participant plane.

J-Y Ollitrault, A.M. Poskanzer and S.A. Voloshin arXiv:0906.3463

Elliptic flow of charged particles in Pb+Pb collisions at $\sqrt{s_{NN}} = 2.76$ TeV

de M. Michel Nostradamus

We report the first measurement of charged particle elliptic flow in Pb+Pb collisions at $\sqrt{s_{NN}}$ = 2.76 TeV with the ALICE detector at the CERN Large Hadron Collider. The measurement is performed in the central pseudorapidity region ($|\eta| < 0.8$) and transverse momentum range $0.25 < p_t < 5 \text{ GeV}/c$. The elliptic flow signal, v_2 , averaged over transverse momentum and pseudorapidity, reaches values of 0.085 for relatively peripheral collisions (40–50% most central). The differential elliptic flow $v_2(p_t)$ reaches a maximum of 0.25 around $p_t = 3 \text{ GeV}/c$. Compared to RHIC Au+Au collisions at $\sqrt{s_{NN}} = 200$ GeV, the elliptic flow increases by about 15% in agreement with expectations based on the observed trend at lower energies.

PACS numbers: 25.75.Ld, 25.75.Gz, 05.70.Fh

Raimond Snellings | Berkeley | 9-12-2022

ALICE (2010)

ALICE Collaboration: Phys. Rev. Lett. 105 (2010) 252302

ALICE (2010)

ALICE Collaboration: Phys. Rev. Lett. 105 (2010) 252302

ALICE (2011)

Raimond Snellings | Berkeley | 9-12-2022

Nikhef

No shock waves - convincing measurement of the higher harmonics non-Glauber initial conditions

ALICE Collaboration: Phys. Rev. Lett. 107 (2011) 032301

- Experimentally we can use within one experiment detailed measurements of the cumulants to constrain the p.d.f. of the v_n and with that help constrain the initial spatial distributions

(2018) 103 ALICE Collaboration: https://doi.org/10.1007/JHEP07

17

The different estimates of v₂ are sensitive to the moments of the v₂ distribution, if $v_2{4}=v_2{6}=v_2{8}$ the distribution is a Bessel-Gaussian p.d.f.

$$v_{2}\{2\} = \langle v_{2} \rangle + \frac{1}{2} \frac{\sigma^{2}}{\langle v_{2} \rangle},$$
$$v_{2}\{4\} = \langle v_{2} \rangle - \frac{1}{2} \frac{\sigma^{2}}{\langle v_{2} \rangle},$$
$$v_{2}\{6\} = \langle v_{2} \rangle - \frac{1}{2} \frac{\sigma^{2}}{\langle v_{2} \rangle}.$$

ALICE Collaboration: https://doi.org/10.1007/JHEP07 (2018) 103

Raimond Snellings | Berkeley | 9-12-2022

A fine splitting is observed which is centrality dependent showing the non Bessel Gaussian contribution

The splitting does not depend on the pt range used and collision energy

The results agree well with model calculations as well as with ATLAS results based on a different technique

ALICE Collaboration: https://doi.org/10.1007/JHEP07 (2018) 103

 $v_2\{n\}-v_2\{m\}$

Raimond Snellings | Berkeley | 9-12-2022

A fine splitting is observed between v_{2} {8} and v_{2} {6}

Can be contributed to the skewness of the p.d.f.

Higher order contributions are constrained in the equality

$$\frac{1}{1}(v_2\{4\}-v_2\{6\}).$$

20

Raimond Snellings | Berkeley | 9-12-2022

Li Yan, J-Y Ollitrault, A. M. Poskanzer, Phys. Rev. C 90, 024903 (2014)

- A negative skewness is observed as expected due to the constrains on ϵ_2 between 0-1
- The skewness agrees well with model calculations and increases towards peripheral collisions due to the constraint of 1 $V_2 \propto \mathcal{E}_2$

$$v_2 \propto \varepsilon_2$$

ALICE Collaboration: https://doi.org/10.1007/JHEP07 (2018) 103

 $V_2 \propto \varepsilon_2$

Li Yan, J-Y Ollitrault, A. M. Poskanzer, Phys. Rev. C 90, 024903 (2014)

$$P(\varepsilon_2) = \frac{1}{k_2} 2 \alpha \varepsilon_2 (1 - \varepsilon_2^2)^{\alpha - 1} (1 - \varepsilon_0^2)^{\alpha + 1/2}$$

Raimond Snellings | Berkeley | 9-12-2022

The elliptic power distribution can be used to describe the underlying p.d.f. of ε_2

The parameter a qualifies the magnitude of the flow fluctuations, ε_0 the mean eccentricity in the reaction plane and k_2 the proportionality between ε_2 and v_2 ; v_2 $=k_2 \varepsilon_2$

ALICE Collaboration: https://doi.org/10.1007/JHEP07 (2018) 103

 $v_2\{2\} \propto \varepsilon\{2\}$ $v_2\{4\} \propto \varepsilon\{4\}$

T_RENT₀ (p=0) and IP-Glasma initial conditions describe measurements best

Raimond Snellings | Berkeley | 9-12-2022

ALICE Collaboration:arXiv:2211.04384

- Hybrid model description of heavy-ion collisions can be constrained and tested
- Currently only limited number of observables used
- Inclusion more observables will likely also effects extraction of transport parameters

ALICE Collaboration:arXiv:2211.04384

Nik hef

See updates in Govert Nijs and Wilke van der Schee arXiv:2206.13522

The next decade(s)

Still many open questions

ALICE Collaboration:arXiv:2211.04384

Similar quality as early RHIC data, looking forward to the next decade(s) :-)

Raimond Snellings | Berkeley | 9-12-2022

The next decade(s)

ALICE Collaboration:arXiv:2211.04384

Timeline

ALICE 3 LoI:

Heavy Ion Run 2022

ALICE 3 Detector Concept

ALICE 3 Detector

Compact ultra-light all-silicon tracker

• $\sigma_{p_T}/p_T \approx 1 - 2\%$

Large acceptance

better statistics, correlations, rapidity dependence Vertex detector with unprecedented pointing resolution

• $\sigma_{\rm DCA} \approx 10 \mu {\rm m} \left(p_T = 200 {\rm ~MeV}/c \right)$

Excellent electron and hadron identification (TOF + RICH)

• $\pi/K/p$ separation up to a few GeV/c

Electron ID up to about 3 GeV/c with 10³ pion rejection Muon identification (Muon absorber + Muon chambers)

• Muon ID down to $p_T \approx 1.5 \text{ GeV}/c$ **ECAL**

Photons/jets over large η Superconductor magnet system (2T) Continuous read-out and online processing

Raimond Snellings | Berkeley | 9-12-2022

Unique Detector Concept and Features at the LHC

Thank you Art!

$v_n(p_t, y) = \langle \cos[n(\varphi - \Psi_{\rm RP})] \rangle$

Raimond Snellings | Berkeley | 9-12-2022

Contents

Collecti	ive phenor	nena in no	n-central nuclear collisions			
October	22, 2018 Dr	aft		1		
Sergei A. Voloshin, Arthur M. Poskanzer, and Raimond Snellings						
1	Introd	Introduction				
	1.1	Unique of	observable	3		
	1.2	Definitio	ons: flow and nonflow, the reaction and			
	participant planes					
2	Experi	Experimental methods				
	2.1	Event plane method				
	2.2 Two and many particle correlations					
	2.3	q-distrib	utions, Lee-Yang Zeros, Bessel and Fourier			
		transforms				
	2.4	Methods	s comparison: sensitivity to nonflow and flow			
		fluctuati	ons	13		
3	Anisot	tropic flow:	results and physics	17		
	3.1	General		17		
		3.1.1	Interplay of anisotropic and radial flow	19		
		3.1.2	Flow amplification by coalescence	20		
	3.2	Directed	l flow	21		
		3.2.1	Physics of directed flow	21		
		3.2.2	System size and energy dependence;			
			extended longitudinal scaling	23		
	3.3	Elliptic f	flow	24		
		3.3.1	In-plane elliptic flow	24		
		3.3.2	Low density and ideal hydro limits, v_2/ε plot.	26		
		3.3.3	Viscous effects	28		
		3.3.4	Initial eccentricity and <i>v</i> ₂ fluctuations	32		
		3.3.5	(Pseudo)rapidity dependence	34		
		3.3.6	Low p_T region: mass splitting	36		
		3.3.7	Constituent quark number scaling	38		
		3.3.8	High p_T region	42		
		3.3.9	Rare probes	46		
	3.4	Higher h	narmonics	48		
4	Conclu	usion and o	utlook	50		
5	Acknowledgments					
Re	eferences					

Nikhef