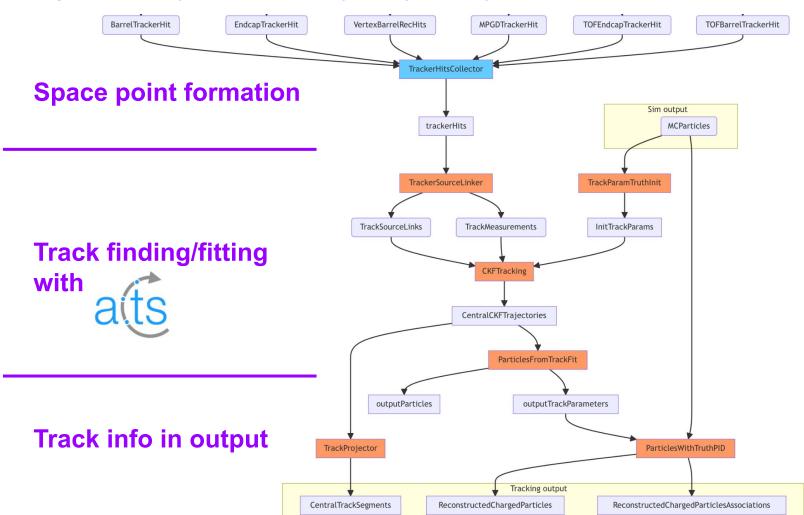
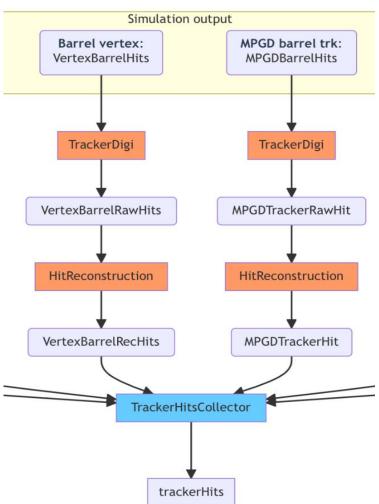
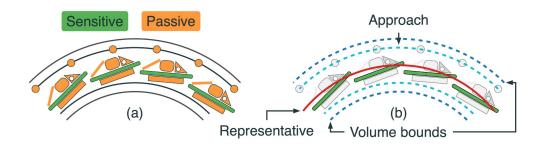


ePIC Track Reconstruction Status

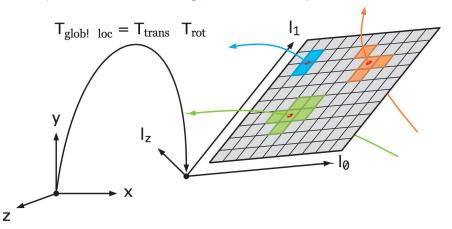

Shujie Li RNC EIC group meeting

Feb 21, 2023

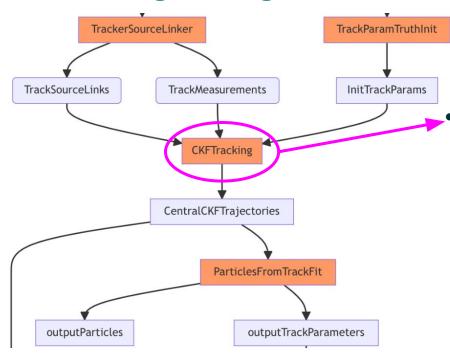



Track Reconstruction in ElCrecon

Full diagram at https://eic.github.io/EICrecon/#/design/tracking?id=full-diagram



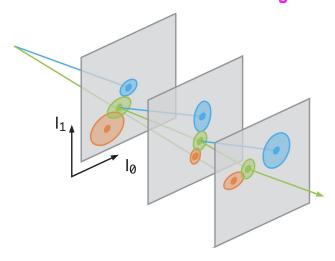
Space Point Formation



- Global / local coord, transformation
- Digitization:
 - Raw hits -> Surface and cell ID
 - Energy deposit threshold: 0 (110 electrons->eV?
 Check ALICE code)
- Clustering algorithm available at <u>https://github.com/acts-project/acts/pull/1190</u> (Louis-Guillaume Gagnon, March 9th)

Track Finding/Fitting with ACTS

ElCrecon: JANA2 based recon framework


1

ElCrecon factory (interface)

ACTS: CKF Algorithm

Combinatorial Kalman Filter (CKF)

- combine track finding and fitting
- allows track branching
 - → user-defined measurement selector (number, chi2)
- high efficiency
- Need a reasonable "initial guess"

Hits selection

acts/Core/include/Acts/TrackFinding/MeasurementSelector.hpp

CKF:

if no hits on surface→ nHoles++

for (track state : track state candidates):

Track state → hits on surface

Calculate chi2 of all hits and rank, find chi2min

if chi2min > chi2CutOff → save chi2min as outlier


```
9  namespace eicrecon {
10    struct CKFTrackingConfig {
11         std::vector<double> m_etaBins = {}; // {this, "etaE
12         std::vector<double> m_chi2CutOff = {15.}; //{this, "
13         std::vector<size_t> m_numMeasurementsCutOff = {10};
14    };
15 }
```

of sensitive surfaces = nHoles + nMeasurements + nOutliers

Initial Guess for CKF: 2. realistic seeding

Seeder: a set of three space points to estimate initial track parameters

- Binned seeder: loop over φ-z binning to try all combinations. Slow at large η
 - tested and bugs fixed. See <u>YueShi Lai's</u> work
- Orthogonal seed finder: can efficiently search for space points within a given range.
 - Initial implementation in ElCrecon Joe Osborn
 - Seeder configuration:
 - default parameters from binned seeder
 - parameter optimization See Rey Cruz-Torres's work

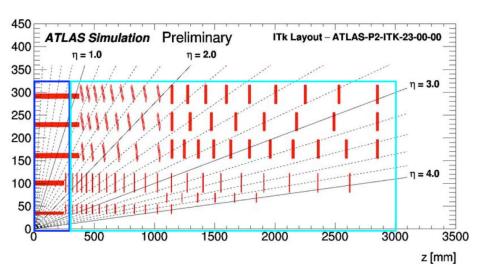
Seeding

Track finding

Track fitting

Parameter	Description
bFieldInZ	z component of magnetic field
rMax	Maximum r value to look for seeds
rMin	Minimum r value to look for seeds
zMin	Minimum z value to look for seeds
zMax	Maximum z value to look for seeds
beamPosX	Beam offset in x
beamPosY	Beam offset in y
deltaRMinTopSP	Min distance in r between middle and top SP in one seed
deltaRMinBottomSP	Min distance in r between middle and bottom SP in one seed
deltaRMaxTopSP	Max distance in r between middle and top SP in one seed
deltaRMaxBottomSP	Max distance in r between middle and top SP in one seed
collisionRegionMin	Min z for primary vertex
collisionRegionMax	Max z for primary vertex
cotThetaMax	Cotangent of max theta angle
minPt	Min transverse momentum
maxSeedsPerSpM	Max number of seeds a single middle space point can belong to - 1
sigmaScattering	How many standard devs of scattering angles to consider
radLengthPerSeed	Average radiation lengths of material on the length of a seed

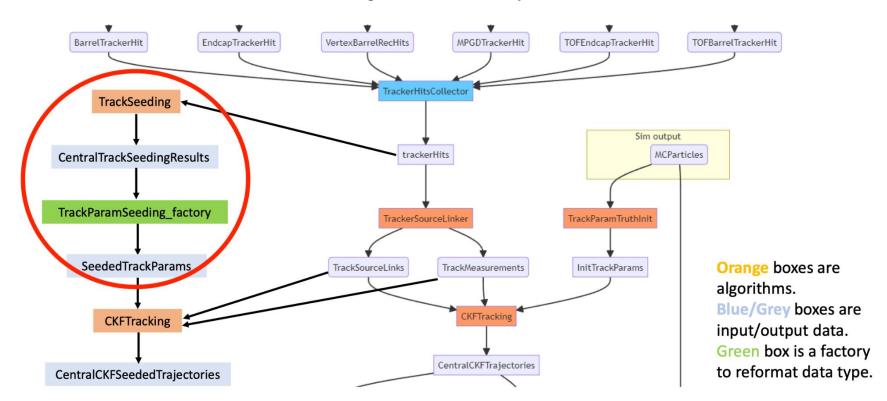
Seeder confirmation/filter


Initial Guess for CKF: 2. realistic seeding

Seed Confirmation/Filter

Individual filter settings for each geometry region.

- Experience from ATLAS-ITK, see <u>Luis Falda Coelho's work</u>
- implementation in ElCrecon, **TBD** Rey, Barak Schmookler


```
r [mm]
centralSeedConfirmationRange = acts.SeedConfirmationRang
    zMinSeedConf=-250 * u.mm,
    zMaxSeedConf=250 * u.mm
    rMaxSeedConf=140 * u.mm,
   nTopForLargeR=1,
   nTopForSmallR=2,
    seedConfMinBottomRadius=60.0 * u.mm.
    seedConfMaxZOrigin=150.0 * u.mm,
    minImpactSeedConf=1.0 * u.mm,
  # contains parameters for seed confirmation
forwardSeedConfirmationRange = acts.SeedConfirmationRang
    zMinSeedConf=-3000 * u.mm.
    zMaxSeedConf=3000 * u.mm,
    rMaxSeedConf=140 * u.mm,
    nTopForLargeR=1,
    nTopForSmallR=2,
    seedConfMinBottomRadius=60.0 * u.mm,
    seedConfMaxZOrigin=150.0 * u.mm,
    minImpactSeedConf=1.0 * u.mm,
```


Initial Guess for CKF: 2. realistic seeding

Supply realistic init parameters to CKF

- CKF with realistic seeding in addition to truth seeding. See <u>Barak's work</u>
 - retain data structure for current downstream analysis
- Switch between truth / realistic seeding. TBD. See <u>Dmitry's work</u>

Track Info in Output

- Track parameters from fit Done
- Track projection Done
- Trajectory info (chi2, number of hits ...)
 - save to histograms with ElCrecon plugins
 - save to output rootfile:
 - **TBD**: write an ElCrecon factory to write trajectory info into data structure
- TBD: Hits associated with tracks

```
size_t nStates = 0;
                                     size_t nMeasurements = 0;
                                     size t nOutliers = 0;
                                     size t nHoles = 0;
                                     double objectim - 0.
                                 trajectory info from ACTS mentChi2 = {};
                                     std::vector<double> outlierChi2 = {};
                                     size_t NDF = 0;
                                     std::vector<unsigned int> measurementVolume = {};
                                     std::vector<unsigned int> measurementLayer = {};
                                     std::vector<unsigned int> outlierVolume = {};
                                     std::vector<unsigned int> outlierLayer = {};
                                     size_t nSharedHits = 0;
                                  };
eicd::Trajectory:
 Description: "Raw trajectory from the tracking algorithm"
 Author: "S. Joosten, S. Li"
 Members:
   - uint32 t
                      type
   - uint32 t
                      nStates
                                       // Number of tracking steps
   - uint32_t
                                      // Number of hits used
                      nMeasurements
                      nOutliers
                                      // Number of hits not considered
   - uint32_t
   - uint32 t
                      nHoles
                                      // Number of missing hits
   float
                      chi2
                                      // Total chi2
   - uint32 t
                      ndf
                                       // Number of degrees of freedom
   - uint32_t
                      nSharedHits
                                       // Number of shared hits with other trajectories
 VectorMembers:
   - float
                      measurementChi2
                                      // Chi2 for each of the measurements
                                      // Chi2 for each of the outliers
   - float
                      outlierChi2
 OneToOneRelations:
   - eicd::TrackParameters trackParameters // Associated track parameters, if any
 OneToManyRelations:
                                      // Measurement hits used in this trajectory
   - eicd::TrackerHit measurementHits
   - eicd::TrackerHit outlierHits
                                      // Outlier hits not used in this trajectory
```

struct TrajectoryState {

Summary

works

- Generate test particles
- GEANT simulation
 - Detailed geometry
 - Digitization at pixel level*
- Hit info to ACTS
- Initial guess for CKF
 - □ truth params smeared
 - seeding to init params
- CKF track finding/fitting algorithm
- Track params from fit
- Event display (Shyam)
 - □ code available on github)

To finish

- Hit clustering (Shujie)
 - Smearing at hit rather than pixel level to resolve multi hits
 - clusterization algorithm
- ACTS Seed finding/filter (Rey, Barak)
- Track info from ACTS
 - Raw hits → primary particle association (Barak)
 - Hits used w/track association
 - χ^2 , # of measurements to rootfile (Shyam)
 - Optimize track quality cuts (Beatrice)
 - χ^2 , # of measurements
- Validation plots
- Background embedding (Kolja?)