SAND Constraints for Theia

R. Petti

University of South Carolina, Columbia SC, USA

Theia LBL meeting 17 March 2023

 \overline{a}

$$
N_{\rm X}(E_{\rm rec}) = \int_{E_{\nu}} dE_{\nu} \, \Phi(E_{\nu}) \, P_{\rm osc}(E_{\nu}) \, \sigma_{\rm X}(E_{\nu}) \, R_{\rm phys}(E_{\nu}, E_{\rm vis}) \, R_{\rm det}(E_{\rm vis}, E_{\rm rec})
$$

Measurements expected to be dominated by systematics given intense LBNF beams.

- ◆ Dedicated measurements to constrain each factor with data
- ✦ Sensitivity of DUNE LBL analysis largely defined by control of systematics achievable \implies ND measurements critical to reduce LBL systematic uncertainties
- ✦ Required to demonstrate that ND can support precision LBL physics with Theia FD4 \implies Need comparable or better LBL sensitivity as equivalent LAr FD
- ✦ Focus on Phase I ND complex: ND-LAr+TMS+SAND+PRISM optimized for LAr FD \implies Can the existing SAND detector be used as Theia ND?

Phase I ND: System for on-Axis Neutrino Detection (SAND) permanently on-axis

3

SYSTEMATICS FROM FLUX

 \overline{a}

$$
N_{\rm X}(E_{\rm rec}) = \int_{E_{\nu}} dE_{\nu} \, \overline{\Phi(E_{\nu})} \, P_{\rm osc}(E_{\nu}) \, \sigma_{\rm X}(E_{\nu}) \, R_{\rm phys}(E_{\nu}, E_{\rm vis}) \, R_{\rm det}(E_{\rm vis}, E_{\rm rec})
$$

 $\Delta\Phi(E_{\nu})$ Flux uncertainties affect virtually every measurement in both ND and FD:

- Long-baseline oscillation analysis sensitive to spectral changes of on-axis flux;
- Flux and related uncertainties folded into all ND observables.

 \implies Only factor which can be easily factored out in ND

$$
N_{\rm X}(E_{\rm rec}) = \int_{E_{\nu}} dE_{\nu} \frac{\Phi(E_{\nu})}{\Phi(E_{\nu})} P_{\rm osc}(E_{\nu}) \sigma_{\rm X}(E_{\nu}) R_{\rm phys}(E_{\nu}, E_{\rm vis}) R_{\rm det}(E_{\rm vis}, E_{\rm rec})
$$

$$
\mathbf{H}_{\bullet} e^{-}
$$

✦ Measurements from ANY nuclear target limited by systematics from nuclear effects

✦ Relative flux vs. energy relevant for LBL analysis:

- SAND: relative ν_μ and $\bar{\nu}_\mu$ flux from $\nu_\mu p \to \mu^- p \pi^+$ and $\bar{\nu}_\mu p \to \mu^+ n$ on H;
- ND-LAr & SAND: relative ν_{μ} flux (limited info) from $\nu e^- \rightarrow \nu e^-$;
- SAND: v_e/ν_μ , $\bar{v}_e/\bar{\nu}_\mu$, and $\bar{\nu}_\mu/\nu_\mu$ ratios vs. energy.

 \blacklozenge Absolute flux largely cancels out in LBL analysis based on $\nu_\mu, \bar{\nu}_\mu, \nu_e, \bar{\nu}_e$ CC samples:

- ND-LAr & SAND: absolute ν_{μ} flux from $\nu e^- \rightarrow \nu e^-$;
- SAND: absolute $\bar{\nu}_{\mu}$ flux from $\bar{\nu}_{\mu}p \to \mu^+ n$ on H.

FLUX MEASUREMENTS WITH H

- **←** Relative ν_{μ} flux vs. E_{ν} from exclusive $\nu_{\mu}p \rightarrow \mu^-p\pi^+$ on H: $\nu < 0.5$ GeV flattens cross-sections reducing uncertainties on E_{ν} dependence.
- \blacklozenge Relative $\bar{\nu}_{\mu}$ flux vs. E_{ν} from exclusive $\bar{\nu}_{\mu}p \to \mu^+ n$ QE on H: $\nu < 0.25$ GeV : uncertainties comparable to relative ν_{μ} flux from $\nu_{\mu}p \to \mu^-p\pi^+$ on H.
- Absolute $\bar{\nu}_{\mu}$ flux from $QE \bar{\nu}_{\mu}p \rightarrow \mu^+ n$ on H with $|Q^2 < 0.05$ GeV²
	- ⇒ Substantial reduction of systematics vs. techniques using nuclear targets

$$
N_{\rm X}(E_{\rm rec}) = \int_{E_{\nu}} dE_{\nu} \, \Phi(E_{\nu}) \, P_{\rm osc}(E_{\nu}) \, \overline{\sigma_{\rm X}(E_{\nu}) \, R_{\rm phys}(E_{\nu}, E_{\rm vis})} \, R_{\rm det}(E_{\rm vis}, E_{\rm rec})
$$

σ_X Cross-section on C and O targets (nuclear effects) required for Theia

 $R_{\rm phys}$ Smearing introduced by nuclear effects on initial and final state particles results in systematics on ΔE_{ν} SCALE since E_{ν} unknown on event-by-event basis.

CROSS-SECTION MEASUREMENTS ON C,O,H2O

- \triangle Many (70-80) thin (1-2% X_0) passive targets separated from active detector (straw layers);
- Targets of high chemical purity ($\sim 97\%$ of mass) keeping average density $\rho \leq 0.18$ g/cm³
- ← High track sampling: 0.15 (0.36)% $X_0 \perp (\parallel)$ with total detector thickness $\sim 1.3X_0$;
- "Solid" hydrogen target from a subtraction of $\text{CH}_2 \& \text{C}$ targets.

$$
N_{\rm X}(E_{\rm rec}) = \int_{E_{\nu}} dE_{\nu} \Phi(E_{\nu}) P_{\rm osc}(E_{\nu}) \overline{\sigma_{\rm X}(E_{\nu}) R_{\rm phys}(E_{\nu}, E_{\rm vis})} R_{\rm det}(E_{\rm vis}, E_{\rm rec})
$$

SAND

✦ Cross-sections & related nuclear smearing on integrated pure C (graphite) target

✦ Cross-sections & related nuclear smearing on "solid" oxygen target:

$$
N_{\rm O}(\vec{x}) \equiv N_{\rm CH_2O}(\vec{x}) - \frac{M_{\rm CH_2/CH_2O}}{M_{\rm CH_2}} N_{\rm CH_2}(\vec{x})
$$

- Exploit unique STT feature: thin passive targets can be replaced during data taking;
- Interactions on oxygen from subtraction between polyoxymethylene (delrin) and default $CH₂$ targets. Oxygen content by mass within delrin is dominant at 53.3%, excellent mechanical properties.
- ✦ Detailed characterization of inclusive & exclusive topologies on C and O:
	- CC interactions from different flavor components of beam;
	- Pion and hadron multiplicity measurements expected from MCND, etc.
	- Background processes for LBL: NC interactions, π^0 and γ , meson decays, etc.

✦ Cross-sections on water target:

$$
N_{\rm H_2O}(\vec{x}) \equiv N_{\rm CH_2O}(\vec{x}) - \frac{M_{\rm C/CH_2O}}{M_{\rm C}} N_{\rm C}(\vec{x})
$$

- Exploit simultaneous presence of alternated CH_2 , C, and CH_2O targets in STT.
- Interactions on water from subtraction between polyoxymethylene (CH_2O) and graphite (C) targets. Water content by mass within delrin is 60%, mass of available C targets larger than C in delrin.

✦ Thin passive water targets can also be integrated in STT:

- Water layers 12 mm thick encapsulated within 1.5 mm delrin shells, corresponding to 0.044 X_0 ;
- Background from C to be subtracted with graphite targets only 10.4%.

SAND can provide high statistics samples of interactions on H, C, O (& H₂O) with large acceptance over the full 4π *angle down to low momenta (* $\rho < 0.18$ *g/cm³)* 11

Muon acceptance for ND-LAr+ND-GAr (Phase II) from ND CDR

Optimization of the ratio between the CH₂ and C thickness shows that *we can keep acceptance differences among CH2, C, CH2O targets <10-3 for all particles*

- ← Combination of ν -H & $\bar{\nu}$ -H CC calibration sample for (anti)neutrino energy scale $|\Delta E_{\nu}|$
- ✦ Compare with CC inclusive interactions on C and O targets \implies Same detector acceptance in STT
- \triangle Calibration using y distribution (minimal nuclear effects on σ)
- ✦ Understanding nuclear smearing required to reduce unfolding systematics

MULTIPLICITIES & EVENT TOPOLOGY

Low-density design and excellent particle ID capabilities allows SAND to measure visible final state particles down to low momenta

Low-density design and excellent particle ID capabilities
allows SAND to measure visible final state particles down to low momenta L_{max} density deviation and such that a suited a D_{max} different anows SAND to measure visible final state particles down to tow momentum EOW-density design and exceller allows SAND to measure visible final state particles down to low momenta *Low-density design and excellent particle ID capabilities*

Addition of ND-GAr in Phase II provides detailed measurements of of the bands shows the impact of potential beam power ramp upper curve is the solid upper curve is the sensitivity in \mathcal{L} *hadron multiplicities on Ar extending the DUNE LBL sensitivity for LAr*

 \implies SAND can provide similar measurements on C,O,H₂O for Theia

17

ACHIEVABLE STATISTICS

 \blacklozenge With default 1.2 MW beam a 1 tonne H_2O target will collect: 1.4×10^6 ν_μ CC/year (FHC) and 0.5×10^6 $\bar{\nu}_\mu$ CC/year (RHC)

 \blacklozenge Replacing 20 CH₂ targets (out of 70 total) with solid delrin slabs in STT would provide an oxygen target of \sim 600 kg, comparable with the available mass of C and H

 \implies Straightforward and relatively inexpensive to implement

 \triangle A water target close to 1 tonne can be easily achieved with a combination of delrin slabs (20 slabs equivalent to about 700 kg H_2O) and thin water targets (for cross-check)

 \implies Statistics adequate to expected systematics from energy scale & flux

With a 2y FHC 1.2 MW exposure uncertainties dominated by systematics even for a relatively small 1 ton target in SAND

$$
N_{\rm X}(E_{\rm rec}) = \int_{E_{\nu}} dE_{\nu} \, \Phi(E_{\nu}) \, P_{\rm osc}(E_{\nu}) \, \sigma_{\rm X}(E_{\nu}) \, R_{\rm phys}(E_{\nu}, E_{\rm vis}) \, \boxed{R_{\rm det}(E_{\rm vis}, E_{\rm rec})}
$$

 R_{det} Detector smearing controlled by ΔE SCALE and reconstruction efficiencies.

 \blacklozenge Requires "identical" technology as in FD: differences in rates, event containment, E_{ν} energy spectra, etc. between ND and FD imply sizable (model) corrections

- SAND can accurately measure fraction of tracks/energy above Cherenkov threshold;
- SAND measures final state particles down to low thresholds guiding scintillation light estimate.

 \implies Does Theia need large WbLS detector with optical readout within ND?

✦ For the calibration of the FD response various constraints can be considered:

- Dedicated testbeam exposure of smaller WbLS optical detector;
- In-situ FD calibration: laser Wakefield acceleration (M. Mooney), FD control samples from athmospheric neutrinos, cosmics, or beam-related events;
- Experience from existing detectors based on a similar technology (e.g. Super-K).

SUMMARY

- ✦ DUNE Phase I ND complex is optimized for LAr FD but SAND can provide valuable ND constraints for a Theia FD4 in Phase II \implies Use of existing ND component can mitigate risks for the Theia LBL program
- ✦ In-situ flux measurements are target-independent and are expected to be dominated by precision measurements using exclusive processes on H in SAND, with additional contributions from ν -e scattering in both ND-LAr and SAND.
- \blacklozenge Detailed characterization of event topologies on C and O (& H₂O) possible in SAND:
	- Cross-section measurements for inclusive and exclusive processes on C and O;
	- Nuclear effects & related smearing for C and O targets;
	- Calibration of E_{ν} scale from comparison with interactions on H with similar detector acceptance.
- ✦ Need to evaluate FD reconstruction systematics and possible calibration strategies \implies Does the Theia LBL program require an additional "identical" ND component?

Backup slides

EXPECTED STATISTICS IN SAND

NOTE: 100 kt-MW-years in Phase I FD corresponds to about 2y FHC $+$ 2y RHC with 1.2 MW beam

TOOL TO REDUCE SYSTEMATICS

 \blacklozenge STT designed to offer a control of v-target(s) similar to e^{\pm} DIS experiments:

- Thin (1-2% X_0) passive target(s) separated from active detector (straw layers);
- Target layers spread out throughout tracker by keeping low density $0.005 < \rho < 0.18$ g/cm³
- Replaceable targets of high chemical purity give $\sim 97\%$ of STT mass (straws 3%).
- \implies STT target configuration can be fully tuned/configured
- ✦ Low-density design & target mass allow accurate in-situ calibrations:
	- $\Delta p < 0.2\%$ momentum scale uncertainty from $K_0 \to \pi^+ \pi^-$ in STT volume (337,000 in FHC);
	- p reconstruction and identification, vertex, etc. from $\Lambda \to p \pi^-$ in STT volume (506,000 in FHC);
	- e^{\pm} reconstruction and identification from $\gamma \to e^+e^-$ in STT volume (8 \times 10⁶ in FHC).
- ✦ SAND multipurpose detector with combined particle ID & tracking:
	- Electron ID with Transition Radiation and dE/dx in $STT + ECAL$ energy and topology;
	- 4π detection of π^0 from γ conversions ($\sim 49\%$) within the STT volume + ECAL clusters;
	- $p/\pi/K$ ID with dE/dx, range, time-of-flight with ECAL, and ECAL energy depositions.

✦ Accurate reconstruction of transverse plane kinematics from particle 4-momenta:

- "Transparent" target/tracker system with total length $\sim 1.3 X_0$;
- NOMAD concept originally developed for kinematic detection of ν_{τ} [Nucl.Phys.B 611 (2001) 3-39].

Hyper-Kamiokande Design Report, arXiv:1805.04163 [physics.ins-det]

6. Measurement of CP asymmetry sub-leading in Hyper-Kamiokade Uncertainties on expected events from FD efficiency and reconstruction

"SOLID" HYDROGEN TARGET

- "Solid" Hydrogen concept: $\nu(\bar{\nu})$ -H from subtraction of CH₂ & C targets
- - Exploits high resolutions & control of chemical composition and mass of targets in STT;
	- Model-independent data subtraction of dedicated C (graphite) target from main $CH₂$ target;

Similar thickness 1-2% X_0 for $both$ $CH₂$ and C

 $CH₂$ and C targets alternated in FV to guarantee same acceptance

Mass ratio optimized for subtraction

 \Rightarrow Equivalent to about $10 \text{ m}^3 \text{ LH}_2$

"SOLID" HYDROGEN TARGET

"Solid" Hydrogen concept: $\nu(\bar{\nu})$ -H from subtraction of CH₂ & C targets

- Exploits high resolutions & control of chemical composition and mass of targets in STT;
- Model-independent data subtraction of dedicated C (graphite) target from main $CH₂$ target;
- Kinematic selection can reduce dilution factor for inclusive & exclusive CC topologies with 80-95% purity and 75-96% efficiency before subtraction.

\implies Viable and acceptable approximation to liquid H_2 detectors

SUMMARY OF FLUX MEASUREMENTS

- **← Relative** ν_{μ} **flux vs.** E_{ν} from exclusive $\nu_{\mu}p \rightarrow \mu^-p\pi^+$ on Hydrogen: $\lt 1\%$ $\nu < 0.5$ GeV flattens cross-sections reducing uncertainties on E_{ν} dependence.
- \blacklozenge Relative $\bar{\nu}_{\mu}$ flux vs. E_{ν} from exclusive $\bar{\nu}_{\mu}p \to \mu^+ n$ QE on Hydrogen: $< 1\%$ $\nu < 0.25$ GeV : uncertainties comparable to relative ν_{μ} flux from $\nu_{\mu}p \to \mu^-p\pi^+$ on H.
- **←** Absolute ν_{μ} flux from $\nu e^- \rightarrow \nu e^-$ elastic scattering: $\langle 2\% \rangle$ \implies Complementary to measurement in LAr TPC with small systematics
- ← Absolute $\bar{\nu}_{\mu}$ flux from QE $\bar{\nu}_{\mu}p\to \mu^+ n$ on H with $\left[Q^2< 0.05$ GeV² $\right]\sim 27$ k/year in RHC
- \blacklozenge Ratio of ν_e/ν_μ AND $\bar{\nu}_e/\bar{\nu}_\mu$ vs. E_ν from CH₂ (& H) targets \implies Excellent e^\pm charge measurement and e^\pm identification (~ 16 k/year $\bar{\nu}_e$ CC in FHC)
- \blacklozenge Ratio of $\bar{\nu}_{\mu}/\nu_{\mu}$ vs. E_{ν} from coherent π^{-}/π^{+} on C (CH₂ and C): 3.5-7% \implies Excellent angular resolution (t variable) and light isoscalar target
- \blacklozenge Determination of parent $\mu/\pi/K$ distributions from $\nu(\bar{\nu})$ -H (& CH₂) at low- ν \implies Direct in-situ measurement for flux extrapolation to FD

Impact of relative flux uncertainty on ND observables

Expected Q^2 distributions for $\nu_\mu p \to \mu^- p \pi^+$ and $\bar{\nu}_\mu p \to \mu^+ n$ on H

Impact of relative flux uncertainty on ND observables

Expected Q^2 distributions for $\nu_\mu p \to \mu^- p \pi^+$ and $\bar{\nu}_\mu p \to \mu^+ n$ on H

BEAM FLAVOR COMPOSITION

- ◆ CC selections based on kinematic tagging, wrong sign (WS) veto, and $\mu^{\pm}(e^{\pm})$ ID: for specific processes/topologies (e.g. CC on H) additional background rejection.
- \triangleq Large acceptance for CC leptons: 99.7% (99.9%) to reconstruct μ^- FHC (μ^+ RHC). ⇒ Small MC corrections reduce model-dependent systematics

← Excellent electron ID, angular (\sim 1.5 mrad) and E_e resolutions:

⇒ Synergy of ND-LAr (syst. dominated) & SAND (stat. dominated) measurements

uncertainties obtained from the beam simulation group are also shown for comparison. Figure 208: Uncertainty on the $\bar{\nu}_{\mu}/\nu_{\mu}$ flux ratio determined in STT from the ratio of coherent pion production
in both the neutrino FHC (left panel) and antineutrino RHC (right panel) beam polarities. The corresp in both the neutrino FHC (left panel) and antineutrino RHC (right panel) beam polarities. The corresponding **e** - C_C and α ^{*n*}-C_C and α