

U.S. MAGNET DEVELOPMENT PROGRAM

Feedback from the PSI Stress-managed Insert Test in Common Coil Dipole DCC017 Ramesh Gupta

USMDP 20 T Subgroup Meeting June 6, 2023

Feedback from PSI Stress-managed Structure in Common Coil

-Ramesh Gupta

Impact of the Load from Insert Coil(s) on the Main Nb₃Sn Coils of DCC017

Basic Question:

Will the transverse Lorentz load from the insert coil(s) exceed the stress or strain limit of Nb_3Sn coils in DCC017? Could it degrade performance or even cause a permanent damage?

Feedback from PSI Stress-managed Structure in Common Coil

-Ramesh Gupta

HTS

Coil#1

HTS

Coil#2

Hybrid Magnet Test Results (1)

Several combinations of currents in the HTS coils and the Nb_3Sn coils were tried.

In all cases, Nb_3Sn coils quenched (a bit before short sample, if no additional strain on Nb_3Sn coil considered).

As such Nb_3Sn coils alone were tested to a higher current

Feedback from PSI Stress-managed Structure in Common Coil

Hybrid Magnet Test Results (2)

> Several combinations of currents in HTS and LTS coils tried. The performance of HTS/LTS hybrid was always limited by the Nb₃Sn coil.

DATE	TIME	HTS COIL	Nb3Sn Coil (A)	HTS Coil (A)	B, hybrid (T)	B, Nb3Sn + trapped
13-Feb-20	1955	Nomex	9830	955	12.3 Tesla	9.39 Tesla
14-Feb-20	1157	Nomex	9617	955	11.96 Tesla	9.87 Tesla
14-Feb-20	1652	NI	10120	955	12.09 Tesla	10.37 Tesla
15-Feb-20	1318	NI	9171	1000	11.53 Tesla	9.34 Tesla
15-Feb-20	1336	NI	-	1590	4.23 Tesla	0.27 Tesla
15-Feb-20	1414	NI	8000	1110	10.74 Tesla	8.1 Tesla
15-Feb-20	1502	NI	9000	910	11.23 Tesla	9.2 Tesla

The hypothesis is that the quench in Nb₃Sn coil is caused by the local strain discontinuity from the pinching forces. To reduce this strain either include a structure on the HTS coil to contain the Lorentz forces, or at least include a structure at the interface to distribute the local stress/strain on NB₃Sn coils.

CO ENERGY Office of Science Feedback

Mechanical Model

ANSYS Run Transverse Stress and Strain from Nb₃Sn 10 kA, HTS 1 kA

Stress and Strain on the LTS Coils from the HTS.

The magnitude of local stress/strain discontinuity may significantly be influenced on the mesh.

Courtesy: John Cozzolino

DEPARTMENT OF

Office of

Science

ANSYS Run Transverse Stress and Strain from $Nb_3Sn 10 kA$, HTS 2 kA

Stress and Strain on the LTS Coils from the HTS.

This seems to be crossing the limit.

Courtesy: John Cozzolino

Feedback from PSI Stress-managed Structure in Common Coil

-Ramesh Gupta

U.S. MAGNET DEVELOPMENT PROGRAM (ok despite energizing with wrong polarity)

PSI coils moved significantly under Lorentz forces to close-in the ~2 mm gap

- No quenches in Nb₃Sn coils, means that the gap tolerances can be relaxed in such structures (though a large variation in the gap should perhaps be avoided)
- Structure of ~2.3 mm rather than ~4 mm was sufficient

Office of Science

• Stress diffusion – avoiding local stress/strain to spreading the stress worked

MDP HTS Coil in a Support Structure

Question: Can a higher hybrid field be reached with some intermediate structure on HTS coil (stress management) ?

Office o

- HTS coils with leftover conductor.
- Coils tested at 77 K in the structure
- Intermediate structure provides stress management
- This structure was inserted in the second aperture
- Similar structure is being used in US-Japan collaboration

Test Configuration for US- Japan Test - Both (field parallel & field perpendicular) Tested Together

Two HTS insert coils in two bores of the common coil dipole (a) Upper bore: field primarily parallel (b) Lower bore: field primarily perpendicular

- Mechanical structure included individually over the two HTS insert coil.
- Upper coils (field parallel) could create ~14 T hybrid field, depending on the actual performance of the conductor.
- Lower coils creates a torque with a discontinuity on the two diagonally opposite sides.
- Surface rounded to reduce discontinuity.

-Ramesh Gupta

Acknowledgement

This test was made possible by the heroic effort of several magnet division staff and close collaboration between PSI and BNL staff, together with the discussion and contributions of other US labs

Click to edit Master title style

Feedback from PSI Stress-managed Structure in Common Coil

-Ramesh Gupta

June 6, 2023

Proof-of-Principle Test of Field Quality Pole Coils in the Common Coil Design

20 T MDP Hybrid Design

Office of Science

- In this case pole coils are oriented differently (hard way bend) from the main coils (soft way bend), same as in the PSI test.
- Pole coils are inserted in an intermediate structure inside the mail coils, same as in the PSI test.
- Therefore, in a way PSI test was the proof-of-principle test of the incorporation of the field quality pole coils in the common coil design

Concept from: PBL/BNL SBIR

-Ramesh Gupta

June 6, 2023

Background

- During the last HTS/LTS hybrid test, the maximum performance of 12.3 T was limited by the LTS coils, and not by the HTS coils.
- Moreover, it was <u>NOT</u> limited by Nb₃Sn coils themselves, as they by themselves worked well. Performance got limited when Nb₃Sn coils were energized together with the HTS insert coils.
- Theory: Nb_3Sn coils were stress/strain limited locally (no intermediate structure to manage or distribute the stresses).
- This question/issue is important in all high field Nb_3Sn magnets.
- All new inserts are planned with intermediate structures. This PSI/BNL test was became a test to overcome the stress limit.
- It allowed higher peak field in DCC017 coils (10.7 T => \sim 12 T)
- More interesting what was observed accidently (magnet survived).

-Ramesh Gupta

BigBox Coil in DCC017

PSI Nb₃SN insert coils are wound with hard way bend.

BNL Nb₃Sn coils are wound with easy way bend, as typical in the common coil.

ENERGY

Office of Science

Feedback from PSI Stress-managed Structure in Common Coil

-Ramesh Gupta

June 6, 2023

Office of Science

BigBox Structure for Stress Management (analysis to be discussed by PSI)

- This brings stress/strain on Nb_3Sn coil of DCC017 below the limit
- Due to the space limitation, the plates were made thicker on the high stress side and thinner on the high field side, with ~2 mm gap at most places.

Feedback from PSI Stress-managed Structure in Common Coil

-Ramesh Gupta

Office of Science

Expected and Observed Test Results

Courtesy: PSI (results to be discussed by them)

- Field of DCC017 Nb₃Sn coils was not limited by their stress/strain limit
- DCC017 coil didn't quench as it reached ~12 T field (BigBox quenched)
- This was higher than ever reached in DCC017 (DCC017 coils ran at a lower current – ~9 kA)

Science

From ASC2006 Paper on DCC017

High field Nb₃Sn coils should include strain as a parameter in such plots

Feedback from PSI Stress-managed Structure in Common Coil

-Ramesh Gupta