Progress with 2212 work

Tengming Shen, Laura Garcia Fajardo Lawrence Berkeley National Laboratory

Daniel Davis, Jianyi Jiang Applied Superconductivity Center, National High Magnetic Field Lab

2023/06/21

This work was supported by the U.S. Department of Energy, Office of Science, Office of High Energy Physics (HEP) through the US Magnet Development Program under contract No. DE-AC02-05CH11231.

Renegade Furnace Updates

• The commissioning of the **Renegade** furnace is ongoing:

- The system has been dried-out
- \circ $\,$ The furnace has seen full temperature at 1 bar $\,$
- \circ $\,$ The furnace has seen full pressure and power $\,$
- \circ $\,$ The furnace can be safely operated $\,$
- The operation data is being evaluated against the models before moving further
- Before coil heat treatments, the controls still need PID-tuning and evaluation runs on the representative dummy-CCT mandrel with short samples.

Bi-CCT1 coils and conductors

U.S. MAGNET DEVELOPMENT

No more cables. Transverse pressure test Incoming.

Only 38 m left. Transverse pressure test done.

3

Bi-CCT1 dimensions, dummy mandrels supporting coil heat treatment optimization and furnace commissioning

Mandrel	IL (Inner Layer)	OL (Outer Layer)	Dummy mandrel
Material	Aluminum Bronze 954	Aluminum Bronze 954	Aluminum Bronze 954
Mandrel ID (mm)	40	70	69.85
Mandrel OD (mm)	66.2	96.2	96.2
Mandrel length (mm)	850	850	850

BiCCT1 inside CCT6

BiCCT1 inside CCT6 and structure

Dummy mandrel supporting coil heat treatment optimization, furnace commissioning, cable and insulation related studies.

Conductor and its architecture

New (SBIR) wires and verification with BIN5 type cables and magnets

PMM220802

- 37 x 18, 0.8 mm strands.
- Billet #1: PMM220802, 305 m; Billet #2: PMM230228, 270 m;
- To be made into a BIN5 type, 9-strand Rutherford cable (4.0 mm x 1.44 mm)
- To check performance of extracted and rolled strands to understand the role of wire architecture in achieving high J_c in a cable and CCT magnet.
- Coil production follows (with experimenting insulation materials for removing leakage).

Conductor and its architecture

An accompanying study to deepen understanding of the science of acehiving high J_e in OPHT Rutherford cables

PMM170725, 0.8 mm, 55 x 18 CCT BIN5c

PMM211005, 1.0 mm, 55 x 18 CCT Bi-CCT2

Samples have been rolled; heat treatment, I_c measurement and microstructural characterizations to be completed.

Studies might need to expand to other strands.

Bi-CCT2 design: Strand and cable

A cable fab request submitted:

	No. of Strands	Strand Dia (mm)	Pitch Angle	Pitch Length (mm)	Cable Width (mm)	Cable Thickness (mm)	Packing Factor	Notes
1	9	0.800	16.40	25.501	4	1.42	83.02%	CCT BIN5 cable 1093
2	17	0.800	15.75	50.103	7.8	1.4	81.21%	Bi-CCT1 cable 1109
3	23	1.000	15.50	86.065	12.3	1.84	82.83%	Bi-CCT2 cable candidates

PMM211005, 1.0 mm, CCT Bi-CCT2

U.S. MAGNET DEVELOPMENT

PROGRAM

Ag-Mg sheath t ~ 0.067 mm, ~24% larger than that of 0.8 mm wires. Does it reduce leakage?

Bi-CCT2 design: Magnetic and geometrical

MandrelIL (Inner Layer)MaterialAluminur Bronze 954Mandrel ID (mm)40Mandrel OD (mm)75.1Mandrel length (mm)850	OL (Outer Layer)mAluminum Bronze 95479.1114.2850			- 100 100				В	SiCCT2 inside C	СТ6	Ansys 2021 R2 PLOT NO. 1
MaterialAluminur Bronze 954Mandrel ID (mm)40Mandrel OD (mm)75.1Mandrel length (mm)850	Maluminum Bronze 954 79.1 114.2 850			-100		and the second sec	<u></u> Z	В	SiCCT2 inside C	CT6	Ansys 2021 R PLOT NO. 1
Mandrel ID (mm) 40 Mandrel OD (mm) 75.1 Mandrel length (mm) BiCCT2	79.1 114.2 850		littan	-100							
Mandrel OD (mm) 75.1 Mandrel length (mm) BiCCT2	114.2 850			-100							
Mandrel length (mm) 850 BiCCT2	850			-100							
BiCCT2								•		•	
700 600 500 (¥) 400 puetts 300 200 100	2 Loadlines — PMM211105 — Peak field on of — Hybrid peak field on of — Hybrid peak field in – – – Dipole field in – – – Hybrid dipole the bore	conductor III -1 field on III -2 n the bore III -3 e field in III -4	BiCCT2 dipo	le field in t main axi	he bore alor	ig the			Mariusz Juchno		
		-5									
0 2 4 0 8 10 12 14 Magnetic Field (T)	10 18 20	-6 -5	500 -300	-100	100 300	500					

Bi-CCT2 fabrication challenges

An attempt to wind 13 mm wide cable (dummy cable, w MgO paper, 13.28 mm x 1.54 mm) to a CCT mandrel (3D printed. Bluestone) with a winding radius of 24 mm shown to be difficult.

Challenge: De-cabling.

Tools/parameters to optimize: Tooling for minimizing de-cabling. TiO_2 coated and bonded insulation sleeve. Mechanical properties of cables (annealing states and cable pitch length).

Groove parameters and winding methods will be optimized first before entering into mandrel fabrication.

BIN5 insert for CCT5

 Moving towards insert coil performance verification, assembly with AI shell, instrumentation, assembly with AI alloy extensions.

Cable transverse pressure experiments

Three samples have been tested (2020, 2022, 2023June). The fourth sample is being prepared.

Europe (CERN): Uni. Twente US sides (MDP): LBNL, NHMFL

Presentation in July 2023.

Third sample, LBNL2002, Apri2023 NHMFL HT, June2023TwenteMea

LBNL2002 (Bi-CCT1ILc coil, 17-strand Rutherford, PMM190118)

Sample #4: LBNL1109 (Bi-CCT1ILb and BiCCT10La, 17-strand Rutherford, PMM180207)

Recent talks

- Bi-2212 Coil technology, Progress and Challenges, Ulf Trociewitz, Youngjae Kim, Daniel Davis
- Progress and plans at LBNL for fabricating 1 m long CCT Bi-2212 coils, Laura Garcia Fajardo.

