

Heavy π 's and light nuclei.

JOHANNES KIRSCHER WITH N. BARNEA, D. GAZIT, U. V. KOLCK

THE CITY COLLEGE OF NEW YORK

יוהנס קירשר

Suppose a copy of QCD exists parallel to the one we *experience*, which differs only in the numerical values of the quark masses. Further assume the existence of a portal between that and our QCD sector which allows for "communication".

What can we learn from the study of their peculiar nuclei?

Heavy π 's and light nuclei.

JOHANNES KIRSCHER WITH N. BARNEA, D. GAZIT, U. V. KOLCK

THE CITY COLLEGE OF NEW YORK

יוהנס קירשר

Heavy π 's and light nuclei.

JOHANNES KIRSCHER WITH N. BARNEA, D. GAZIT, U. V. KOLCK

THE CITY COLLEGE OF NEW YORK

יוהנס קירשר

A hadron prepared at the source

$$\overline{N}_{\text{source}}^{\alpha}(\mathbf{0}, t_0) = \epsilon_{abc}(u^{a,T}C\gamma_5 d^b)u^{c,\alpha}(\mathbf{0}, t_0)$$

Heavy π 's and light nuclei.

JOHANNES KIRSCHER WITH N. BARNEA, D. GAZIT, U. V. KOLCK

THE CITY COLLEGE OF NEW YORK

יוהנס קירשר

A hadron prepared at the source

$$\overline{N}_{\text{source}}^{\alpha}(\mathbf{0}, t_0) = \epsilon_{abc}(u^{a,T}C\gamma_5 d^b)u^{c,\alpha}(\mathbf{0}, t_0)$$

is detected at the sink.

$$N_{\rm sink}^{\alpha}(\mathbf{x},t) = \epsilon_{abc}(u^{a,T}C\gamma_5 d^b)u^{c,\alpha}(\mathbf{x},t)$$

A hadron prepared at the source

$$\overline{N}_{\text{source}}^{\alpha}(\mathbf{0}, t_0) = \epsilon_{abc}(u^{a,T}C\gamma_5 d^b)u^{c,\alpha}(\mathbf{0}, t_0)$$

is detected at the sink.

$$N_{\rm sink}^{\alpha}(\mathbf{x},t) = \epsilon_{abc}(u^{a,T}C\gamma_5 d^b)u^{c,\alpha}(\mathbf{x},t)$$

Statistical monte-carlo-sampling error

Nuclear scales from the lattice apparatus

- i) Non-relativistic theory
- ii) for protons and neutrons
- iii) with contact interactions.

Nuclear scales from the lattice apparatus

- i) Non-relativistic theory
- ii) for protons and neutrons
- iii) with contact interactions.

Nuclear scales from the lattice apparatus suggest

- i) Non-relativistic theory
- ii) for protons and neutrons
- iii) with contact interactions.

Nuclear scales from the lattice apparatus suggest

- i) Non-relativistic theory
- ii) for protons and neutrons
- iii) with contact interactions.

Nuclear scales from the lattice apparatus suggest

- i) Non-relativistic theory
- ii) for protons and neutrons
- iii) with contact interactions.

A sequence of effective (field) theories to relate nuclear properties to QCD parameters, to assess "How much more it takes, to be different".

A sequence of <u>effective (field)</u> <u>theories</u> to relate nuclear properties to QCD parameters, to assess "How much more it takes, to be different".

A sequence of <u>effective (field)</u> <u>theories</u> to relate nuclear properties to QCD parameters, to assess "How much more it takes, to be different".

A sequence of <u>effective (field)</u> <u>theories</u> to relate nuclear properties to QCD parameters, to assess "How much more it takes, to be different".

- i) No bound ${}^{4}S_{\frac{3}{2}}$ 3-nucleon state.
- ii) Scattering lengths run non monotonous with m_{π} .

- i) At physical m_{π} , the 3- and 4-nucleon ground states are correlated.
- ii) This correlation is preserved at higher m_{π} .

CONTESSI et al.

Λ	$m_{\pi} = 140 \text{ MeV}$	$m_{\pi} = 510 \text{ MeV}$	$m_{\pi} = 805 \text{ MeV}$
$2 \ \mathrm{fm}^{-1}$	-97.19 ± 0.06	-116.59 ± 0.08	-350.69 ± 0.05
4 fm^{-1}	-92.23 ± 0.14	-137.15 ± 0.15	-362.92 ± 0.07
6 fm^{-1}	-97.51 ± 0.14	-143.84 ± 0.17	-382.17 ± 0.25
8 fm^{-1}	-100.97 ± 0.20	-146.37 ± 0.27	-402.24 ± 0.39
$\rightarrow \infty$	$-115^{\pm 1}_{\pm 8}(sys)_{\pm 8}(stat)$	$-151^{\pm 2}_{\pm 10}(\text{sys})_{\pm 10}$	$-504^{\pm 20}_{\pm 12}(\text{sys})_{\pm 12}$
Exp.	-127.62	9 <u>1</u> 10	

Table 3: ¹⁶O energy for different values of the pion mass m_{π} and the cutoff Λ , compared with experiment. (No LQCD data exist for this nucleus.) See main text and appendix for details on errors and extrapolations.

CONTESSI et al.

CONTESSI et al.

¹⁶O stability sensitive to structural features (m_{π} , Λ).

MAGNETIC BACKGROUND FIELDS: Experimentally unreachable strengths. (NPLQCD)

MAGNETIC BACKGROUND FIELDS:

BARNEA, PAZY, JK

- i) Diproton radius \approx insensitive to Coulomb repulsion (ecce: large m_{π} and B(pp)) \Rightarrow dynamical QED effect small at \overrightarrow{r} .
- ii) $B(2) < B(3) \Rightarrow r(2) > r(3)$ at $m_{\pi} = 137$ MeV
- iii) B(2) < B(3) but r(2) < r(3) at $m_{\pi} = 806$ MeV

MAGNETIC BACKGROUND FIELDS:

BARNEA, PAZY, JK

- i) Diproton radius \approx insensitive to Coulomb repulsion (ecce: large m_{π} and B(pp)) \Rightarrow dynamical QED effect small at \overrightarrow{r} .
- ii) $B(2) < B(3) \Rightarrow r(2) > r(3)$ at $m_{\pi} = 137$ MeV
- iii) B(2) < B(3) but r(2) < r(3) at $m_{\pi} = 806$ MeV

MAGNETIC BACKGROUND FIELDS:

BARNEA, PAZY, JK

- i) Diproton radius \approx insensitive to Coulomb repulsion (ecce: large m_{π} and B(pp)) \Rightarrow dynamical QED effect small at \overrightarrow{r} .
- ii) $B(2) < B(3) \Rightarrow r(2) > r(3)$ at $m_{\pi} = 137$ MeV
- iii) B(2) < B(3) but r(2) < r(3) at $m_{\pi} = 806$ MeV

MAGNETIC BACKGROUND FIELDS: BARNEA, PAZY, JK 4 B_{3H}^* 3.5 3 [WNu] Hett 2.5 $-\mu_n$ 2 1.5 1 $\lim_{B \to B_{\rm D}} \mu_{^{3}{\rm H}} = \frac{2}{3}\mu_{\rm D} - \frac{1}{3}\mu_{n}$ 0.5 202530 35401545 $B_{^{3}\mathrm{H}}$ [MeV]

- i) $\text{EFT}(\pi) \Rightarrow \mu_{3_H}(B_{3_H}).$
- ii) $\lim_{B(3)\to B(2)} \mu(3) =$ free deuteron+neutron
- iii) $\lim_{B(3)\to\infty} \mu(3) =$ shell model
- iv) zero-range/ $\Lambda \rightarrow \infty$ limit \Rightarrow discontinuous transition between free- and shell-model behavior

MAGNETIC BACKGROUND FIELDS: BARNEA, PAZY, JK 4 B_{3H}^* 3.5 3 [WNu] Hett 2.5 $-\mu_n$ 2 1.5 1 $\lim_{B \to B_D} \mu_{^3H} = \frac{2}{3}\mu_D - \frac{1}{3}\mu_n$ 0.5 202530 40153545 $B_{^{3}\mathrm{H}}$ [MeV]

- i) $\text{EFT}(\pi) \Rightarrow \mu_{3_H}(B_{3_H}).$
- ii) $\lim_{B(3)\to B(2)} \mu(3) =$ free deuteron+neutron
- iii) $\lim_{B(3)\to\infty}\mu(3) =$ shell model
- iv) zero-range/ $\Lambda \rightarrow \infty$ limit \Rightarrow discontinuous transition between free- and shell-model behavior

MAGNETIC BACKGROUND FIELDS: BARNEA, PAZY, JK 4 B_{3H}^* 3.5 3 [MNn] Held 2.5 $-\mu_n$ 2 1.5 1 $\lim_{B \to B_D} \mu_{^3H} = \frac{2}{3}\mu_D - \frac{1}{3}\mu_n$ 0.5 202530 153540 45 $B_{^{3}\mathrm{H}}$ [MeV]

- i) $\text{EFT}(\pi) \Rightarrow \mu_{3_H}(B_{3_H}).$
- ii) $\lim_{B(3)\to B(2)} \mu(3) =$ free deuteron+neutron
- iii) $\lim_{B(3)\to\infty} \mu(3) =$ shell model
- iv) zero-range/ $\Lambda \rightarrow \infty$ limit \Rightarrow discontinuous transition between free- and shell-model behavior

MAGNETIC BACKGROUND FIELDS: BARNEA, PAZY, JK 4 B_{3H}^* 3.5 3 [MNn] H^{EH} 2.5 $-\mu_n$ 2 1.5 1 $\lim_{B \to B_{\rm D}} \mu_{^{3}{\rm H}} = \frac{2}{3}\mu_{\rm D} - \frac{1}{3}\mu_{n}$ 0.5 25152030 3540 45B_{3H} [MeV]

- i) $\text{EFT}(\pi) \Rightarrow \mu_{3_H}(B_{3_H}).$
- ii) $\lim_{B(3)\to B(2)} \mu(3) =$ free deuteron+neutron
- iii) $\lim_{B(3)\to\infty} \mu(3) =$ shell model
- iv) zero-range/ $\Lambda \rightarrow \infty$ limit \Rightarrow discontinuous transition between free- and shell-model behavior

PURE NEUTRON CLUSTER. JK (UNDER REV.) 40GWU/CalLat ${}^3n \underline{}^{\mathrm{P}}n$ -3.5° $\epsilon = 1.5$ 20 $\epsilon = 0$ $^{-50}_{-20} \delta(J^{\pi}) ~[{ m Deg}]$ $E_{\rm c.m.}^{5}$ [MeV] $\mathbf{2}$ 3 4 8 7 $^{2}n^{\underline{s}}n$ -40

PURE NEUTRON CLUSTER. JK (UNDER REV.) 40 -3.5° GWU/CalLat ${}^{3}n \underline{P}n$ $\epsilon = 1.5$ 20 $\epsilon = 0$ 2ⁿ^Pn $\delta(J^{\pi}) \, [\mathrm{Deg}]$ $E_{\text{c.m.}}^{5}$ [MeV] 3 24 8 1 -20 ${}^{2}n^{\underline{s}}n$ -40

Observations:

- i) Negative-parity 3-neutron ground state $\leftrightarrow \pi$ (tetraneutron)=positive.
- ii) Enhancement target-neutron interaction with target's neutron number. \Downarrow (?)

particle-stable *A*-neutron cluster

PURE NEUTRON CLUSTER. JK (UNDER REV.) 40 -3.5° GWU/CalLat ${}^{3}n \underline{P}n$ $\epsilon = 1.5$ 20 $\epsilon = 0$ $\delta(J^{\pi}) \, [\mathrm{Deg}]$ manni $E_{\rm c.m.}^{5}$ [MeV] 3 24 8 7 -20 ${}^{2}n^{\underline{s}}n$ -40

Observations:

- i) Negative-parity 3-neutron ground state $\leftrightarrow \pi$ (tetraneutron)=positive.
- ii) Enhancement target-neutron interaction with target's neutron number. \downarrow (?)

particle-stable A-neutron cluster