Cold-QCD Physics of the STAR Forward Upgrade

James L. Drachenberg

for the STAR Collaboration

OUTLINE

- Open questions
- STAR Forward upgrade
- A few examples
- Summary

Open Questions in Cold QCD

The last decades in nuclear/particle physics have seen tremendous successes

Open Questions in Cold QCD

The last decades in nuclear/particle physics have seen tremendous successes

• STAR results have played a leading role, including in the realm of cold QCD

Open Questions in Cold QCD

The last decades in nuclear/particle physics have seen tremendous successes

• STAR results have played a leading role, including in the realm of cold QCD

A few of the many fascinating questions that remain...

- How are the sea quarks and gluons, and their spins, distributed in space and momentum inside the nucleon? How do the nucleon properties emerge from them and their interactions?
- How do color-charged quarks and gluons, and colorless jets, interact with a nuclear medium? How do the confined hadronic states emerge from these quarks and gluons? How do the quark-gluon interactions create nuclear binding?
- How does a dense nuclear environment affect the quarks and gluons, their correlations, and their interactions? What happens to the gluon density in nuclei? Does it saturate at high energy, giving rise to a gluonic matter with universal properties in all nuclei, even the proton?

https://drupal.star.bnl.gov/STAR/starnotes/public/sn0648

RHIC Cold QCD physics after BES-II at Mid- & Forward Rapidities: The RHIC Cold QCD Plan for 2017 to 2023: A Portal to the EIC (*arXiv:1602.03922*)

- \rightarrow Critical to the mission of the RHIC physics program
- \rightarrow *Fully realize* the scientific promise of the EIC

- RHIC Cold QCD physics after BES-II at Mid- & Forward Rapidities:
- The RHIC Cold QCD Plan for 2017 to 2023: A Portal to the EIC (arXiv:1602.03922)
- $\rightarrow\,$ Critical to the mission of the RHIC physics program
- ightarrow Fully realize the scientific promise of the EIC
- Midrapidity: https://drupal.star.bnl.gov/STAR/starnotes/public/sn0669
- Based on existing STAR detectors, utilizing recent BES II upgrades (iTPC, eTOF, EPD)
- Forward-rapidity: https://drupal.star.bnl.gov/STAR/starnotes/public/sn0648
- Upgrades consist of HCal + ECal + Tracking in range of $2.5 < \eta < 4.5$

- **RHIC Cold QCD physics after BES-II at Mid- & Forward Rapidities:**
- The RHIC Cold QCD Plan for 2017 to 2023: A Portal to the EIC (arXiv:1602.03922)
- $\rightarrow\,$ Critical to the mission of the RHIC physics program
- ightarrow Fully realize the scientific promise of the EIC

Midrapidity: https://drupal.star.bnl.gov/STAR/starnotes/public/sn0669

• Based on existing STAR detectors, utilizing recent BES II upgrades (iTPC, eTOF, EPD)

Forward-rapidity: https://drupal.star.bnl.gov/STAR/starnotes/public/sn0648

• Upgrades consist of HCal + ECal + Tracking in range of $2.5 < \eta < 4.5$

- RHIC Cold QCD physics after BES-II at Mid- & Forward Rapidities:
- The RHIC Cold QCD Plan for 2017 to 2023: A Portal to the EIC (arXiv:1602.03922)
- $\rightarrow\,$ Critical to the mission of the RHIC physics program
- ightarrow Fully realize the scientific promise of the EIC
- Midrapidity: https://drupal.star.bnl.gov/STAR/starnotes/public/sn0669
- Based on existing STAR detectors, utilizing recent BES II upgrades (iTPC, eTOF, EPD)

Forward-rapidity: https://drupal.star.bnl.gov/STAR/starnotes/public/sn0648

• Upgrades consist of HCal + ECal + Tracking in range of $2.5 < \eta < 4.5$

Strong endorsement by RHIC PAC:

- As the physics program that is foreseen for forward physics is substantial, *full utilization* of future polarized proton beam time must be made to realize the proposed forward physics program.
- RHIC management is encouraged to *find a* way to enhance and include a forward physics program at RHIC.

The STAR Forward Upgrade: Calorimetry

Performance Needs

ECal: ~ $10\%/\sqrt{E}$ (pp/pA) and ~ $20\%/\sqrt{E}$ (AA) reuse PHENIX PbSC calorimeter with new readout

- Benefit: significant cost reduction!
- Tradeoff: uncompensated calorimeter system
- **HCal:** ~ $60\%/\sqrt{E}$ (pp/pA)
- Sandwich iron-scintillator plate sampling cal.
- Same readout for both calorimeters

Cost:

ECal: \$0.57M HCal: \$1.53M Preshower: \$0.06M Total: \$2.2M* *includes contingency and manpower

Intensive R&D on both calorimeters as part of STAR and EIC Detector R&D, including FNAL test beam and STAR in situ tests

The STAR Forward Upgrade: Tracking

3 Si discs + 4 Small-strip Thin Gap Chambers

Location from interaction point: Si: 90, 140, 187 cm sTGC: 270, 300, 330, 360 cm (*outside Magnet*)

Performance Needs: Momentum resolution: 20-30% for $0.2 < p_T < 2$ GeV/c Tracking efficiency: 80% at 100 tracks/event

Cost: \$3.3 M

Complete understanding of nucleon structure requires knowledge of

- Unpolarized PDF
- Helicity PDF
- Transversity helicity odd \rightarrow requires another chiral-odd distribution

Complete understanding of nucleon structure requires knowledge of

- Unpolarized PDF
- Helicity PDF
- Transversity helicity odd \rightarrow requires another chiral-odd distribution
 - Global analyses access in SIDIS + e^+e^- , e.g. via "Collins" or IFF asymmetries
 - Currently a limited reach in (x, Q^2)

Anselmino et al: PRD 87, 094019 (2013) Kang et al: PRD 93, 014009 (2016) Radici et al: JHEP 05, 123 (2015)

Complete understanding of nucleon structure requires knowledge of

- Unpolarized PDF
- Helicity PDF
- Transversity helicity odd \rightarrow requires another chiral-odd distribution
 - Global analyses access in SIDIS + e^+e^- , e.g. via "Collins" or IFF asymmetries
 - Currently a limited reach in (x, Q^2)

Collins effect, now observed in pp and largely consistent with SIDIS+ e^+e^-

- Tests of TMD factorization and universality
- Sample wider kinematic space \rightarrow insight into TMD evolution

Utilize $p + p \rightarrow jet(h^{\pm})$, as at midrapidity

- $0.05 \leq x \leq 0.5$
- $10 \lesssim Q^2 \lesssim 100 ~{
 m GeV^2}$

$$\delta q^{a} = \int_{0}^{1} [\delta q^{a}(x) - \delta \bar{q}^{a}(x)] dx$$

Forward Rapidity Physics: Gluon Helicity

Forward Rapidity Physics: Gluon Helicity

Forward Rapidity Physics: Gluon Helicity

Constrain Δg at low x with forward dijets

- More sensitive to shape of $\Delta g(x)$ than inclusive probes
- Correlating forward jet with associated jet in different rapidity ranges samples a varied range of *x*
- Pushing both jets to $\eta > 2.8$ allows sensitivity of $x \sim 10^{-3}$

Forward Rapidity Physics: Nuclear PDFs

- Understanding the initial state of heavy nuclei is critical to RHIC and LHC programs
- Knowledge currently limited when compared to our knowledge of free protons
- Vital to extend understanding at low x over range of Q^2
- Furthermore, need data for different nuclei to understand *A*-dependence of nuclear PDFs
- Need probes with $Q^2 > Q_s^2$
- Need probes immune to final-state strong interactions

Forward Rapidity Physics: Nuclear PDFs

- Pilot measurements from 0.45 pb^{-1} pAu and 1 pb^{-1} pAl taken in 2015
- Planned 2023 runs → significant impact on global analyses
- Sensitive to $10^{-3} \leq x \leq 10^{-2}$ and $6 \leq Q^2 \leq 40 \text{ GeV}^2$, where nuclear modifications should be significant
- Precision of pA data → enable stringent test of nPDF universality when combined with data from EIC

- **Definitive observation** of saturation regime would significantly advance understanding of nucleon structure and high-energy nuclear interactions
- Evidence seen at HERA, RHIC, and LHC \rightarrow alternative explanations remain

- **Definitive observation** of saturation regime would significantly advance understanding of nucleon structure and high-energy nuclear interactions
- Evidence seen at HERA, RHIC, and LHC \rightarrow alternative explanations remain
- Workhorse measurement at RHIC: di-hadron correlations in dAu

- **Definitive observation** of saturation regime would significantly advance understanding of nucleon structure and high-energy nuclear interactions
- Evidence seen at HERA, RHIC, and LHC \rightarrow alternative explanations remain
- Workhorse measurement at RHIC: di-hadron correlations in dAu
 → "double interactions" provide alternative explanation
- Theoretical complications for strongly-interacting final states

- 2015 pAu and pAl enable a detailed look at dihadrons with varying associated particle p_T
- \rightarrow insight into "double interaction" contribution to dAu
- Pilot R_{pA} for direct- γ in 2015

- 2015 pAu and pAl enable a detailed look at dihadrons with varying associated particle p_T
- \rightarrow insight into "double interaction" contribution to dAu
- Pilot R_{pA} for direct- γ in 2015
- Future increased luminosity+upgrades enables additional probes, e.g. forward $\gamma + jet$
 - Sensitive only to dipole gluon density
 - Sample 0.001 < x < 0.005 for both γ and jet in range 1.3 < η < 4.0 with p_T > 3.2 GeV/c
 - Complement with probes, e.g. $\gamma + h$ and di-jet

- 2015 pAu and pAl enable a detailed look at dihadrons with varying associated particle p_T
- \rightarrow insight into "double interaction" contribution to dAu
- Pilot R_{pA} for direct- γ in 2015
- Future increased luminosity+upgrades enables additional probes, e.g. forward $\gamma + jet$
 - Sensitive only to dipole gluon density
 - Sample 0.001 < x < 0.005 for both γ and jet in range 1.3 < η < 4.0 with p_T > 3.2 GeV/c
 - Complement with probes, e.g. $\gamma + h$ and di-jet

Critical test of universality when combined with EIC

- Knowledge of *transverse* density fluctuations improved over recent years
- Constraints on *longitudinal* structure more limited
- 3D-Glasma constrained by LHC \rightarrow crucial test of QCD evolution with RHIC data
- Critical to understand 3+1 dimensional viscous hydrodynamics evolution and transport of hadronic phase

- Knowledge of *transverse* density fluctuations improved over recent years
- Constraints on *longitudinal* structure more limited
- 3D-Glasma constrained by LHC \rightarrow crucial test of QCD evolution with RHIC data
- Critical to understand 3+1 dimensional viscous hydrodynamics evolution and transport of hadronic phase
- STAR with existing detectors: Hint of longitudinal de-correlations
- Wider $\Delta \eta$ can probe in more detail

The STAR Forward Upgrade

$$\begin{aligned} r_n(\eta) &= \frac{\langle V_n(-\eta)V_n^*(\eta_{ref}) \rangle}{\langle V_n(\eta)V_n^*(\eta_{ref}) \rangle} \\ &= \frac{\langle v_n(-\eta)v_n(\eta_{ref})\cos\{n[\Psi_n(-\eta) - \Psi_n(\eta_{ref})]\} \rangle}{\langle v_n(\eta)v_n(\eta_{ref})\cos\{n[\Psi_n(\eta) - \Psi_n(\eta_{ref})]\} \rangle} \end{aligned}$$

- Measures relative fluctuation between $v_n(-\eta)$ and $v_n(\eta)$
- Sensitive to longitudinal flow asymmetry and event plane twist
- Decorrelation in preliminary STAR data from existing forward detector larger than seen at LHC
- Models with viscosity correction describe r_2 fairly well but discrepancies in r_3

$$\begin{split} r_n(\eta) &= \frac{\left\langle V_n(-\eta) V_n^*(\eta_{ref}) \right\rangle}{\left\langle V_n(\eta) V_n^*(\eta_{ref}) \right\rangle} \\ &= \frac{\left\langle v_n(-\eta) v_n(\eta_{ref}) \cos\{n[\Psi_n(-\eta) - \Psi_n(\eta_{ref})]\}\right\rangle}{\left\langle v_n(\eta) v_n(\eta_{ref}) \cos\{n[\Psi_n(\eta) - \Psi_n(\eta_{ref})]\}\right\rangle} \end{split}$$

- Measures relative fluctuation between $v_n(-\eta)$ and $v_n(\eta)$
- Sensitive to longitudinal flow asymmetry and event plane twist
- Decorrelation in preliminary STAR data from existing forward detector larger than seen at LHC
- Models with viscosity correction describe r_2 fairly well but discrepancies in r_3

Forward Upgrade:

- Higher statistics and improved detectors
- Additional probes: decompose in Legendre polynomials, i.e. *a_{mn}* coefficients
- Lower \sqrt{s}
 - Energy-dependence of long. fluctuations
 - Constrain hadronic transport models

Opportunities at Midrapidity

Related Studies at Midrapdity

- Fragmentation functions in pp and pA, e.g. through hadrons within jets
- Nuclear modification of hadronization, e.g. through Collins effect in *pA*

Diffractive Physics

- Ultra-peripheral J/ψ to access spatial gluon dist.
- Dijets in UPC to access gluon Wigner function

Much, much more!

https://drupal.star.bnl.gov/STAR/starnotes/public/sn0669

• STAR has played a leading role in hot and cold-QCD studies over the last two decades

- STAR has played a leading role in hot and cold-QCD studies over the last two decades
- The midrapidity plan beyond BES II and forward upgrade proposals present a compelling opportunity for continuing to address tantalizing questions in nuclear and particle physics

- STAR has played a leading role in hot and cold-QCD studies over the last two decades
- The midrapidity plan beyond BES II and forward upgrade proposals present a compelling opportunity for continuing to address tantalizing questions in nuclear and particle physics
- The forward upgrade builds upon the strengths of STAR to establish innovative and precision probes
 - to address critical questions, now
 - fully realize the scientific promise of the future EIC

- STAR has played a leading role in hot and cold-QCD studies over the last two decades
- The midrapidity plan beyond BES II and forward upgrade proposals present a compelling opportunity for continuing to address tantalizing questions in nuclear and particle physics
- The forward upgrade builds upon the strengths of STAR to establish innovative and precision probes
 - to address critical questions, now
 - fully realize the scientific promise of the future EIC

In the words of the RHIC PAC:

- As the physics program that is foreseen for forward physics is substantial, full utilization of future polarized proton beam time must be made to realize the proposed forward physics program.
- RHIC management is encouraged to *find a way to enhance and include a forward physics program at RHIC*.