The MEG Experiment: Run I Final Results and Preparation for Run II

Terence Libeiro University of California Irvine

On behalf of MEG Collaboration CIPANP May28-June3, 2018

Outline

- MEG physics
 - CLFV
 - MEG and other experiments
- MEG Setup and Results
 - Run I Detectors and Analysis
 - Results
- MEG 2
 - Motivation
 - Upgrades in subsystems
 - Expected sensitivities and schedule

3

Charged Lepton Flavor Violation

- Lepton flavor violation observed in neutral sector ($v_u v_e v_\tau$). In the charged sector it is suppressed $|\Delta m^2_v/M^2_W|^2$.
- Small branching ratio due to light left-handed neutrinos.
- Experimentally, allows a clean, (near) background free channel to test the Standard Model, by experiments on intensity/precision frontier

 $\mathcal{B}(\mu \to e\gamma) = \frac{3\alpha}{32\pi} \Big| \sum_{i=2,3} U^*_{\mu i} U$

Extensions to the Standard Model

process

- Observation of enhancement in rate would signal new physics
- SUSY extensions predict higher rate which can be confirmed or ruled out.
- High energy probe beyond the energy reach of the LHC
- Complementary with other cLFV searches:
 - μ → eee (Mu3e, PSI),
 - µN → eN (Mu2e, FNAL) and (COMET, J-PARC)

CIPANP, May 2018

4

CLFV limits so far

MEG

Reaction

 $\mu^+ \to e^+ \gamma$

 $\mu^+ \rightarrow e^+ e^- e^+$

 $\mu^- \mathrm{Ti} \to e^- \mathrm{Ti}^{\dagger}$

- Over half-century of searches, the limits have improved 1012
- Limits calculated for dipole operators for comparison

$\mu^- \mathrm{Pb} \to e^- \mathrm{Pb}^{\dagger}$	$< 4.6 \times 10^{-11}$	90%	SINDRUM II	1996	[52]
$\mu^{-} Au \rightarrow e^{-} Au^{\dagger}$	$< 7.0 \times 10^{-13}$	90%	SINDRUM II	2006	[54]
μ^{-} Ti $\rightarrow e^{+}$ Ca ^{*†}	$< 3.6 \times 10^{-11}$	90%	SINDRUM II	1998	[53]
$\mu^+ e^- \to \mu^- e^+$	$< 8.3 \times 10^{-11}$	90%	SINDRUM	1999	[55]
$\tau \to e \gamma$	$< 3.3 \times 10^{-8}$	90%	BaBar	2010	[56]
$\tau \to \mu \gamma$	$< 4.4 \times 10^{-8}$	90%	BaBar	2010	[56]
$\tau \rightarrow eee$	$< 2.7 \times 10^{-8}$	90%	Belle	2010	[57]
$\tau \to \mu \mu \mu$	$< 2.1 \times 10^{-8}$	90%	Belle	2010	[57]
$\tau \to \pi^0 e$	$< 8.0 \times 10^{-8}$	90%	Belle	2007	[58]
$\tau \to \pi^0 \mu$	$< 1.1 \times 10^{-7}$	90%	BaBar	2007	[59]
$\tau \to \rho^0 e$	$< 1.8 \times 10^{-8}$	90%	Belle	2011	[60]
$\tau \to \rho^0 \mu$	$< 1.2 \times 10^{-8}$	90%	Belle	2011	[60]
$\pi^0 \to \mu e$	$< 3.6 \times 10^{-10}$	90%	KTeV	2008	[61]
$K_L^0 \rightarrow \mu e$	$< 4.7 \times 10^{-12}$	90%	BNL E871	1998	[62]
$K_L^0 \rightarrow \pi^0 \mu^+ e^-$	$< 7.6 \times 10^{-11}$	90%	KTeV	2008	[61]
$K^+ \to \pi^+ \mu^+ e^-$	$< 1.3 \times 10^{-11}$	90%	BNL E865	2005	[63]
$J/\psi \to \mu e$	$< 1.5 \times 10^{-7}$	90%	BESIII	2013	[64]
$J/\psi \to \tau e$	$< 8.3 \times 10^{-6}$	90%	BESII	2004	[65]
$J/\psi \to \tau \mu$	$< 2.0 \times 10^{-6}$	90%	BESII	2004	[65]
$B^0 \to \mu e$	$< 2.8 \times 10^{-9}$	90%	LHCb	2013	[68]
$B^0 \to \tau e$	$< 2.8 \times 10^{-5}$	90%	BaBar	2008	[69]
$B^0 \to \tau \mu$	$< 2.2 \times 10^{-5}$	90%	BaBar	2008	[69]
$B \to K \mu e^{\ddagger}$	$< 3.8 \times 10^{-8}$	90%	BaBar	2006	[66]
$B \rightarrow K^* \mu e^{\ddagger}$	$< 5.1 \times 10^{-7}$	90%	BaBar	2006	[66]
$B^+ \to K^+ \tau \mu$	$< 4.8 \times 10^{-5}$	90%	BaBar	2012	[67]
$B^+ \to K^+ \tau e$	$< 3.0 \times 10^{-5}$	90%	BaBar	2012	[67]
$B_s^0 \to \mu e$	$< 1.1 \times 10^{-8}$	90%	LHCb	2013	[68]
$\Upsilon(1s) \to \tau \mu$	$< 6.0 \times 10^{-6}$	95%	CLEO	2008	[70]
$\overline{Z \rightarrow \mu e}$	$<7.5\times10^{-7}$	95%	LHC ATLAS	2014	[71]
$Z \rightarrow \tau e$	$< 9.8 \times 10^{-6}$	95%	LEP OPAL	1995	[72]
$Z \to \tau \mu$	$< 1.2 \times 10^{-5}$	95%	LEP DELPHI	1997	[73]
$h \to e \mu$	$< 3.5 \times 10^{-4}$	95%	LHC CMS	2016	[74]
$h \to \tau \mu$	$< 2.5 \times 10^{-3}$	95%	LHC CMS	2017	[75]
$h \rightarrow \tau e$	$< 6.1 \times 10^{-3}$	95%	LHC CMS	2017	[75]
		Ca	libbi and	Signo	orelli

C.L.

90%

90%

90%

Experiment

MEG at PSI

SINDRUM

SINDRUM II

Present limit

 $<4.2\times10^{-13}$

 $< 1.0 \times 10^{-12}$

 $< 6.1 \times 10^{-13}$

Reference

[49]

[50]

[51]

Year

2016

1988

1998

MEG experiment at PSI

The MEG Collaboration, ~70 researchers from 5 countries

CIPANP, May 2018

Beam line

- World's most intense continuous beam: current - 2.2 mA, power - 1.4 MW , proton energy - 590 MeV
- Muons produced by π decays near target surface in secondary beam line πe5
- Monochromatic, lowmomentum μ⁺ source
 28 MeV/c, tuned with the target to maximize μ⁺ stopping rate

MEG detector setup

- Measurement of $\mu \rightarrow e + \gamma$ decay
- Observables for energy, position and timing of the decay products:
 E_e, E_γ, t_{eγ}, θ_{eγ}, φ_{eγ}

Backgrounds

- Signal
 - $\label{eq:m_mu} \circ \quad m_{\mu}/2 \; 52.83 \; MeV \; , \\ time \; coincident \; e^{\scriptscriptstyle +} \; and \; \gamma$
 - Back to back topology
- Radiative Muon Decay (RMD) (μ → e+v_u+v_e+γ)
 - \circ E < 52.83, time coincident
- Accidental Background (ACC)
 (μ → e+v_u+v_e+γ (acc))
 - E< 52.83 , flat probability dist in time
 - Michel decay + γ radiated from another decay or annihilation

- Estimation from data/MC and analysis cuts
 - ACC pdf: estimated from data
 - RMD pdf: rates are calculated from theory, smeared with detector resolutions, also confirmed in data in sideband region

CIPANP, May 2018

Analysis strategy

- Background pdfs event to event and constant pdfs
- Time sidebands used for background estimation
- Cuts applied to events in the analysis window:
 - 48<E_Y<58,
 - 50<E_e<56,
 - It_{eγ}I<0.7,
 - Iθ_{eγ}l<50,
 - Iφ_{eγ}I<50.
- Events fitted in analysis window with maximum likelihood procedure, as well as in sidebands to check consistency

CIPANP, May 2018

Maximum Likelihood analysis

- Perform likelihood fits to determine Nsig, N_{Acc}, N_{RMD}
- Constraints on nuisance parameters taken into account. Time-dependent variation in target planarity(t) and position.
- Process PDFs and wellmonitored up-to-date resolutions used for precise determination of background.
- Applied on event-to-event basis.

Signal Nuisance parameters

$$\mathcal{L}(N_{\text{Sig}}, N_{\text{RMD}}, N_{\text{Acc}}, t) =$$

$$\frac{e^{-N}}{N_{\text{obs}}!} C(N_{\text{RMD}}, N_{\text{Acc}}, t) \times$$

$$\prod_{i}^{N_{\text{obs}}} (N_{Sig}S(x_{i}, t) + N_{RMD}R(x_{i}) + N_{Acc}A(x_{i}))$$

$$PDFs$$
where,

$$x_{i} = \{E_{\gamma}, E_{e^{+}}, t_{e^{+},\gamma}, \theta_{e^{+},\gamma}, \phi_{e^{+},\gamma}\}$$
Vector of observables

$$N = N_{Sig} + N_{Acc} + N_{RMD}$$

iotal events in the fit

Single event sensitivity (SES)

- SES: Branching ratio at which the experiment will see a single signal event
- Branching ratio is calculated as the ratio of Signal events normalized to the total muon decays observed in the experiment
- N_{total} calculated independently from RMD sidebands (µ→eγvv), and Michel events (µ→evv) using prescaled triggers :

$$\mathcal{B}(\mu^{+} \to e^{+} + \gamma) = \frac{N_{Sig}(\mu^{+} \to e^{+} + \gamma)}{N_{total}},$$
$$N_{total} = \frac{N^{RMD,Michel}}{\mathcal{B}_{RMD,Michel}} \times \frac{1}{\langle A \times \epsilon \rangle^{RMD,Michel}}$$

N_{total} calculated from the two methods with 3.5% uncertainty

SES =
$$1/N_{total} = (5.84 \pm 0.2) \times 10^{-14}$$

CIPANP, May 2018

CIPANP, May 2018

cLFV branching ratio upper limit is set at :

 $\mathcal{B}(\mu \to e\gamma) < 4.2 \times 10^{-13} \ (90\% \ C.L.)$

Datasets from 2009-11,2012, 2009-13. Results consistent with null hypothesis. Systematic uncertainties dominated by target alignment-5%, other effects <1%.

- The confidence interval for N_{Sig} is calculated using Feldman-Cousins method with profile-likelihood ratio ordering.

Profile likelihood ratio using events in the

analysis window, shown as a function of signal

Limit setting on the BR

branching ratio.

3

Eur. Phys. J. C (2016) 76:108

Sensitivity limit, Motivation for MEG2

To get best sensitivity:

- higher statistics, better acceptance and efficiency
- better background rejection, better resolutions CIPANP, May 2018

MEG 2

- Best possible limits of allowed by the detector technology
- Upgraded detector components
- High statistics
- Improved resolutions, acceptance and background rejection

Upgrade proposal : arXiv:1301.7225

- Front-End requirements:
 - fast and high quality signal sampling,

Trigger

- large number of readout channels (~9K),
- pre-amplification,
- Triggering

WDB Board

CIPANP, May 2018

- WaveDream board designed for MEG II
 - 16 channels (DRS4) with gain amplification and pole-zero cancelation
 - read with 12 bit resolution
 - Integrated FPGA for triggering
 - 5 GSPS analog sampling
- Status: Tested successfully with LXe, pTC and RDC in 2017

DCH

e v

- Single volume drift chamber
- 40-50 μm Ag/Al cathode,
 20 μm Au/W anode
- He-Isobutane (90:10)
- Increased transparency, reduced multiple scattering
- Increased reconstruction efficiency, & transparency to pTC for matching
- High acceptance 2π
- Operate under high pile-up environment (7× 10⁷ μ/s)
- Fast electronics and improved reconstruction algorithm
 CIPANP, May 2018

Core gaussian resolutions (σ)	MEG	MEG II (MC)
o _e (keV)	306	130
∂ _e (mrad)	9.4	5.3
p _e (mrad)	8.7	3.7
e Efficiency	40	78
oTC match Efficiency	45	90

LXe Calorimeter

- Increase granularity, greater active area
- Higher light collection efficiency, γ detection
- Increase pile-up rejection
- Uniform response for shallow events

12×12 mm² MPPC (MEG 2)

CIPANP, May 2018

LXe Calorimeter

- Increase granularity, greater active area
- Higher light collection efficiency, γ detection
- Increase pile-up rejection
- Uniform response for shallow events
- Increased acceptance
- Improved position and energy resolution

Core gaussian resolutions (σ)	MEG	MEG 2 (MC)
Photon E (%)	2.4 (w>2cm) 1.7 (w<2cm)	1.1(w>2cm) 1.0(w<2cm)
Photon Position (u,v,w) (mm)	5,5,6	2.6,2.2,5
γ-e ⁺ timing (ps)	122	84

pixelated Timing Counter (pTC)

- 2 Large pixelated arrays (US, DS) 16× 16 small scintillating tiles (BC-422)
- Readout by AdvanSiD SiPMs
- Provide fast response, good pileup rejection (10⁸ µ/s), uniform photon propagation path
- Calculated resolutions with μ⁺ beam running conditions meet expectations:

 $\begin{aligned} \sigma_{te^{*}} & (N_{hits} = 9) \approx 31 \text{ ps,} \\ \sigma_{te^{*}} & (N_{hits} = 1) \approx 93 \text{ ps} \end{aligned}$

MEG

MEG 2

Radiative Decay Counter (RDC)

- Relatively large fraction of Accidental RMD background will contribute in MEG 2
- RDC designed to tag radiative muon decays coincident with γ close to the kinematic limit, i.e. low-momentum e⁺.
- 2 Layers: Plastic scintillator for timing, LYSO for energy measurement
- Expected 15% improvement in sensitivity

New Calibration methods

- Laser: pTC timing calibration individual channels using synchronous laser
- Target Alignment: Continuously monitor target foil for deformation, and change in position using high resolution photography
- X-ray: Position Survey of MPPC photodetectors inside LXe using X-ray
- Scintillation foil (Luminophore): In-situ, non-destructive system for beam profile monitoring based in CsI(TI)/ Lavsan(Mylar)

Resolutions expected in MEGII

Core gaussian resolutions (σ)	MEG	MEG 2 (MC)
Positron E (keV)	380	130
Positron θ (mrad)	9.4	5.3
Positron φ (mrad)	8.7	3.7
Photon E (%)	2.4 (w>2cm) 1.7 (w<2cm)	1.1(w>2cm) 1.0(w<2cm)
Photon Position (u,v,w) (mm)	5,5,6	2.6,2.2,5
Positron-Photon timing (ps)	122	84

- Higher statistics (x10) due to higher beam intensity (7×10⁷µ/s) and higher efficiency and slightly higher acceptance
- MEG 2 sensitivity calculated using simulated events and up-to-date detector resolutions
 CIPANP, May 2018

Upgrades summary

CHY

- 1. DAQ:Tested. Full production in 2018
- 2. DCH: Assembly finished. Shipped to PSI
- 3. LXe: Upgrades finished. Tested with 30% channels. Electronics tests and calibrations ongoing.
- 4. Target: Ready. Testing alignment and monitoring systems

- 5. pTC: Fully tested. Ready for Data.
- 6. RDC: Tested. Ready for Data.
- 7. Calibrations: Hardware ready. Analysis algorithms development in progress.

Eur.Phys.J. C78 (2018) 5, 380

Target

Conclusions

- Results from MEG I using complete dataset set the limit on cLFV at <u>4.2×10⁻¹³ (90% C.L.)</u>. Best cLFV result to date. An improvement of x30 over MEGA experiment. [EPJC (2016) 76:434, PRL 83(8),1521–1524 (1999)]
- An upgrade of MEG is underway, with hardware and assembly phase finished. Sub-detectors are either in testing phase, or ready for physics. The small scale test with all detectors is scheduled for end of this year (2018), first engineering run in 2019. Analysis strategy is the same as MEG, algorithms need to be tuned to the new detectors and running conditions. [EPJC(2018) 78:380]
- The upgrades have focussed on improving all detectors, target and beam intensity to get the highest possible sensitivity for µ→eγ using current detector technology. Overall, resolutions are improved by x2, statistics will improve x10, permits the final sensitivity <u>6×10⁻¹⁴</u> (90% C.L.) in running period of 3 years.

	MEG I (%)	MEG II (%)
µ⁺ stops	80	83
Trigger	99	99
γ	63	69
e+	30	70

Publications

(2018) 78:380 MEG II Collaboration $\mu^+ \rightarrow e^+ \gamma$ with the full dataset of the MEG experiment, EPJC (2016) 76:434 Cavalieri, 56127 Pisa, Italy Muon polarization in the MEG experiment: predictions and measurements, EPJC (2016) 76:223 © The Author(s) 2018 polarized muons in the MEG experiment, EPJC (2016) 76:108 a e-mail: paolo.cattaneo@pv.infn.it Published online: 16 May 2018

- The design of the MEG II experiment, EPJC
- 2. Search for the lepton flavour violating decay
- 3.
- 4. Measurement of the radiative decay of

Gouvea, Vogel (2013): arXiv:1303.4097

 $\mu \rightarrow e\gamma vs \mu N \rightarrow eN$ $\mu \rightarrow e\gamma vs \mu \rightarrow 3e$ MEG 2 competitive k<1 < 5000 4000 $B(\mu \rightarrow eee)=10^{-1}$ $B(\mu \rightarrow e \text{ conv in }^{27}\text{Al})=10^{-7}$ 3000 10 $B(\mu \rightarrow e\gamma)=10^{-14}$ 2000 $B(\mu \rightarrow e\gamma)=10^{-13}$ $B(\mu \rightarrow e \text{ conv in }^{27}\text{Al})=10^{-16}$ $B(\mu \rightarrow eee)=10^{-14}$ 1000 900 800 $B(\mu \rightarrow e\gamma)=10^{-14}$ 700 $B(\mu \rightarrow e\gamma)=10^{-13}$ 600 500 10^{3} 400 300 EXCLUDED (90% CL EXCLUDED (90% CL) 10² 10 10 1 10 10 1 10 10 $\mathcal{L}_{CLFV} = \frac{m_{\mu}}{(\kappa+1)\Lambda^2} \bar{\mu}_R \sigma_{\mu\nu} e_L F^{\mu\nu} + \qquad \mathcal{L}_{CLFV} = \frac{m_{\mu}}{(\kappa+1)\Lambda^2} \bar{\mu}_R \sigma_{\mu\nu} e_L F^{\mu\nu} + \qquad \text{dipole interaction}$ $\frac{\kappa}{(\kappa+1)\Lambda^2}\bar{\mu}_R\gamma_\mu e_L\bar{f}\gamma^\mu f \quad \frac{\kappa}{(\kappa+1)\Lambda^2}\bar{\mu}_R\gamma_\mu e_L(\bar{u}_L\gamma^\mu u_L + \bar{d}_L\gamma^\mu d_L) \quad \mu e, \mu q \text{ interaction}$

CIPANP, May 2018

Data taking periods MEG

17

	Calibration of	Frequency
μ decays	CDCH	Continuously
Mott positrons	CDCH	Annually
Cosmic rays	LXe, LXe-CDCH	Annually
Charge Exchange p→ n	LXe	Annually
Radiative µ decay	LXe-pTC	Continuously
Proton accelerator	LXe, LXe-pTC	Weekly
Neutron generator	LXe	Weekly
Radioactive source	LXe	Annually
LED	LXe	Continuously
Laser	рТС	Continuously