Results from ANITA

Cosmin Deaconu on behalf of the ANITA Collaboration

University of Chicago / Kavli Institute for Cosmological Physics

CIPANP 2018 May 29, 2018

THE IN THE

ANITA Collaboration

ANtarctic Impulsive Transient Antenna

12 institutes, 3 countries, 4 continents

Science Motivation: Ultra-High-Energy ν 's (> EeV)

Both astrophysics (understand sources, composition) and high-energy physics (measure EeV cross-section) motivations. Expected flux is very low, so need big detector.

Detection Mechanism: Radio Emission from Askaryan Effect in Ice

- Askaryan (charge-excess) radiation: Fast-moving charge density in dielectric → coherent emission (∝ E²) at long (radio) wavelengths
 - Charge excess from annihilation of positrons with electrons in material
 - > At wavelengths larger than lateral width, don't resolve individual charges
- Confirmed in ice with SLAC beam test (Phys.Rev.Lett.99:171101,2007)
- $\bullet\,$ Radio attenuation length in ice is $\sim 1~\text{km}$

ANITA Experiment Concept

ANITA Experiment Concept

ANITA Experiment Concept

Antarctica: Land of Ice and Long-Duration Ballooning

- - Go to Antarctica not just for ice but also for favorable wind patterns, perpetual sun, few people.
 - At float (35-40 km), balloon grows to size of a football stadium, $\mathcal{O}(10^6 \text{ km}^2)$ of ice visible.
 - Severe weight and power limitations 600W, 4000 lb

Wind patterns over Antarctica

ANITA Instrument

- $\bullet\,$ Signal ($\sim\,$ 180-1200 MHz) split into digitization and trigger paths
 - ▶ Tunnel diode first-level trigger. FPGA takes $O(10^{5-6} \text{ Hz})$ singles rate $\rightarrow O(50 \text{ Hz})$ global rate
 - Switched Capacitor Array digitizers, \sim 2.6 GSa/s, $\mathcal{O}(100 \text{ ns})$.

Timeline of Completed ANITA flights				
ANITA-Lite	ANITA-I	ANITA-II	ANITA-III	ANITA-IV
2003-2004	2006-2007	2008-2009	2014-2015	2016
18 days, 2 antennas	35 days, 32 antennas	30 days, 40 antennas	22 days, 48 antennas	29 days, 48 antennas
Piggy-back on TIGER	Multi-band, Pol-independent trigger	Multi-band, VPol trigger	Full-band HPol + VPol trigger	Full-band, Lin-Pol trigger
Analyzed	Analyzed	Analyzed	Recently analyzed	Analysis Ongoing
Cosmin Deaconu (UChicago/KICP) Results from ANITA				CIPANP18 8 / 19

ANITA-III Flight (2014-2015)

- Independent H + V trigger, with causal timing requirement between antennas
- Increased data rate with GPU prioritizer
- Complications from new military comm satellites \rightarrow loss of volume, significant improvements to data analysis required.
- Calibration pulses sent from launch site (LDB Facility) and remote site (WAIS divide)

ν Signal and Backgrounds (Fake $\nu{'}{\rm s})$

Askaryan Emission from ν 's

- Impulsive signal (few ns)
- Broadband
- Plane-wave
- Linearly polarized; mostly vertically-polarized (VPol) due to interaction geometry (Earth opaque to EeV v's) and transmission through air-ice boundary (Fresnel coefficients).

Continuous Wave (CW) Signals

Anthropogenic narrow-band signals (from satellites and bases) contaminate most data

Thermal Noise

Incoherent random noise, that sometimes by chance looks impulsive $% \left({{{\left[{{{\left[{{{c}} \right]}} \right]}_{ijkl}}}_{ijkl}}} \right)$

Self-triggered "payload blasts"

 RF emission produced on payload; does not satisfy plane wave condition

Impulsive Anthropogenic Emission

Transformers, engines, etc. produce broadband impulsive emission that can mimic ν 's. These are the worst.

Results from ANITA

Sketch of analysis

Three independent ν analyses for ANITA-III. Basic flow:

- Filter waveforms (reduce CW) and remove events failing quality cuts
- Form correlation map, where we calculate channel cross-correlations with different direction assumptions
- From peaks of correlation map, form coherent waveforms, generate features (e.g. impulsivity, linear polarization fraction) used to cut out thermal noise
- Use pointing information to point to continent; select regions with little anthropogenic activity.

ANITA-III Askaryan ν Results

- arXiv:1803.02719 (submitted to PRD)
- Most sensitive search found one candidate on a background of $0.7^{+0.5}_{-0.3}$ events
- Consistent with background, so set limit, but the event looks pretty good (very isolated, very impulsive, thick ice, right polarization)

Another Signal: Radio Emission from Extensive Air Showers (EAS)

- Earth's magnetic field separates charges in EAS's, produces radio emission
 - ▶ "Direct" ~horizontal CR's: miss ground.
 - "Reflected" down-going CR's: point to ground, opposite polarity

ANITA-III EAS Search

- Polarization from B-field and shower direction. B-field in Antarctica ~vertical → mostly horizontally-polarized (HPol).
- Can check geomagnetic hypothesis by querying local magnetic field and checking consistency of polarization angle.
- Physics sideband for ν searches, but dedicated search also performed.
- Nearly 30 EAS candidates among all the ANITA-III searches.

Sensitivity to Upward-Going τ Showers?

- u_{τ} creates τ which escapes atmosphere and decays, producing shower
- Would have elevation of a reflected UHECR, but polarity of direct

Anomalous "Mystery" Events

Top-Left: Anomalous A-III event Top-Right, Bottom-Left: Direct UHECR candidates

Bottom-Right: A reflected UHECR candidate

- Anomalous event found in ANITA-I. Another found in ANITA-III (arxiv:1803.05088).
- Mostly HPol, matches UHECR template, polarity consistent with direct cosmic ray event, **but clearly points to ice.**
- Would like to call it a τ candidate, but chord length through Earth in tension with SM cross-section and flux in tension with Auger and IceCube limits .
- No satisfying interpretation yet; now that we have two events much harder to dismiss as a background.

ANITA-IV (2016)

- ~ 100 million events recorded, under process of being analyzed.
- Key upgrades:
 - New trigger that requires linear polarization without preference for H or V (better sensitivity to non-SM vN cross-sections)
 - Dynamic, tunable hardware notch filters to reduce CW, greatly increasing livetime
- Analysis expected to be completed sometime this year.
 - Major analysis goal is to reduce anthropogenic background by using additional discriminators other than location.
 - Expectation is that it will be the most sensitive ANITA yet.

Future: ANITA-V?

- Proposal submitted
- New digitizers, with more even sampling, better bandwidth, and longer length
- Beam-forming trigger (use interferometry in real time with a streaming digitizer)

Old vs. new digitizer bandwidth. E. Oberla

Conclusion

- ANITA I-III combined set the best limits on UHE ν flux above $10^{19.5}$ eV.
- Many EAS's from CR's detected in ANITA-III.
- One of the ANITA-III EAS's is anomalous in the same way as an event from ANITA-I.
- Stay tuned for ANITA-IV, which should have better sensitivity and hopefully shed some light on previous results.
- The proposed ANITA-V will have substantial hardware improvements.

Questions?

Backup Slides

(Some) Anomalous Event Explanations

$\nu_{\tau}\text{-induced}$ EAS

- + Would produce upward-going EAS
- Chord through Earth not compatible with SM cross-section
- Tension with IceCube and Auger results

Funny reflection of UHECR EAS

- + Apparent upward-going EAS shower
- Hard to invert polarity but maintain coherence
- Would likely have seen effect in data from HiCal (trailing balloon with HV pulser)

Anthropogenic Background

- + No physics to explain
- We consider it unlikely

Askaryan Radiation from ν

- + Could produce impulsive emission
- Not in tension with other results
- Polarization likely would be rare coincidence

Transition Radiation from UHECR EAS

- + Could produce impulsive emission
- Random polarization, likely insufficient power

Some Other Exotic Particles (heavy ν DM, sterile ν)

- + Could produce upward-going EAS
- New physics
- Tension with IceCube and Auger

The Raw Data (a Calibration Pulse, Not a ν)

- 48 dual-polarization horn antennas
- Sampled at \approx 2.6 GHz's
- 100 ns per event
- 50 Hz global trigger rate

\$\mathcal{O}(10^7)\$ RF triggers per flight (ANITA-III and IV)

Using Spatial Information to Remove Anthropogenics

- We assume anthropogenic emission is spatially clustered on the continent, so we only consider isolated events as candidates.
- For each signal-like event, we measure a direction with some pointing resolution.
- One example clustering algorithm:
 - Project all interesting events to continent and accumulate to form a "clustering map." Use to compute overlap integral of each event with all other events.
 - Isolated events will have overlap integrals close to zero
- Other methods to tackle anthropogenics include pairwise event clustering or a binned continent analysis.

ANITA-III Block Diagram

ANITA-III Trigger

ANITA-IV Trigger

Askaryan Experiments In-Ice Balloon Lunar Antennas Regolith e.g. ANITA e.g. ARA, ARIANNA, RICE e.g. GLUE, NuMoon phased array 10^{6} km^{3} 10^{6} km^{3} 10^{2} km^{3} volume 100 10 100 1 EeV threshold PeV PeV ZeV