The Radium-225 Experiment Matthew R. Dietrich For the Ra EDM Collaboration

EDM SECTORS

Sector	Exp Limit (e-cm)	Location	Method	Standard Model
Electron	9 x 10 ⁻²⁹	Harvard-Yale	ThO molecules in a	10 ⁻³⁸
			beam	
Neutron	3 x 10 ⁻²⁶	ILL	UCN in a bottle	10 ⁻³¹
Nuclear	7 x 10 ⁻³⁰	U. Washington	¹⁹⁹ Hg atoms in a cell	10 ⁻³³
		2		Argonne 合

RADIUM EDM

A large quadrupole and octupole deformation results In an enhanced Schiff moment – Auerbach, Flambaum & Spevak (1996)

Relativistic atomic structure weakens the Schiff theorem, resulting in a strong enhancement with increasing Z

(²²⁵Ra/¹⁹⁹Hg ~ 3)

– Dzuba, Flambaum, Ginges, Kozlov (2002) $\Psi^{-} = (|\alpha\rangle - |\beta\rangle)/\sqrt{2}$ 55 keV $\Psi^{+} = (|\alpha\rangle + |\beta\rangle)/\sqrt{2}$

A closely spaced parity doublet enhances the appearance of parity violating terms in the underlying Hamiltonian

– Haxton & Henley (1983)

$$S \propto \sum_{i \neq 0} \frac{\left\langle \psi_0 \left| \hat{S}_z \right| \psi_i \right\rangle \left\langle \psi_i \left| \hat{H}_{PT} \right| \psi_0 \right\rangle}{E_i - E_0} + c.c.$$

	C_T	g(0)	g(1)
Ra/Hg	2	430	833
Ra/Xe	38	4200	23000
Ra/n	∞	.1	20

J. Engel et al., Progress in Particle and Nuclear Phys. (2013)

RADIUM SETUP $Ra(NO_3)_2+Ba$ Transverse Cooling **HV** Electrodes Oven Zeeman Magnetic Shielding Slower & Magnet Coils DIUM η ~ 1.6*10^-6 Ĵ. (Low vapor pressure) For EDM: For Testing: Ra-225 Ra-226 I = 1/2, J = 0I = 0, J = 0 $t_{1/2} = 15 \text{ days}$ $t_{1/2} = 1600 \text{ yrs}$ ²²⁶Ra MOT 200,000 atoms 0.6 mm 40 µK

J. R. Guest et al., PRL 98 093001 (2007)

TRANSFER ATOMS FROM MOT TO "BUS" ODT

TRANSFER ATOMS FROM "BUS" TO "HOLDING" ODT

TRANSFER ATOMS FROM "BUS" TO "HOLDING" ODT

(2012)

EDM RESULT

M. Bishof et al. PRC 94, 025501 (2016)

EDM RESULT

M. Bishof et al. PRC 94, 025501 (2016)

SYSTEMATICS

Effect (e-cm)	2016 Measurement	Improved Statstics	Co-magnetometer
E-squared Effects	1×10 ⁻²⁵	7×10 ⁻²⁹	7×10 ⁻³¹
B-field Correlations	1×10 ⁻²⁵	5×10 ⁻²⁷	3×10 ⁻²⁹
ODT Power Corr.	6×10 ⁻²⁶	9×10 ⁻³⁰	9×10 ⁻³²
Stark Interference	6×10 ⁻²⁶	2×10 ⁻²⁷	3×10 ⁻²⁹
Blue Power Corr.	7×10 ⁻²⁸	1×10 ⁻³¹	1×10 ⁻³¹
Blue Freq. Corr.	4×10 ⁻²⁸	8×10 ⁻³⁰	8×10 ⁻³⁰
E x v Effects	4×10 ⁻²⁸	7×10 -30	-
Leakage Current	3×10 ⁻²⁸	9×10 ⁻²⁹	-
E-field Ramping	9×10 ⁻²⁸	2×10 ⁻²⁹	-
Geometric Phase	3×10 ⁻³¹	7×10 ⁻³⁰	5×10 ⁻³³
Total	2×10 ⁻²⁵	5×10 ⁻²⁷	4×10 ⁻²⁹

M. Bishof et al. PRC 94, 025501 (2016)

EDM LIMITS

- SNR/shot = .2-.4 in current experiment
- Atom shot noise limit is 12. How do we get there?

IMPROVED DETECTION

IMPROVED DETECTION

Increase from 2.1 photons per atom to 1000 photons per atom, for a nominal SNR improvement of 20.

Consistent with an SNR factor improvement of 17

Consistent with an SNR factor improvement of 17

INCREASED FIELD

Niobium electrodes newly installed: >300 kV/cm demonstrated (J. Singh/MSU, M. Kelly, T. Reid/ANL, M. Poelker/Jlab)

Phys. Rev. Spec. Top. - Acc. and Beams, 15, 083502 (2012)

Present: Copper Electrodes, E = 70 kV/cm

Factor of 4-5 increase in EDM Sensitivity

Together, a factor of ~100 increase, bringing us to high 10⁻²⁶ or low 10⁻²⁵ e-cm level

EFFECT ON STANDARD MODEL EXTENSIONS

RIGHT-HANDED CHARGED CURRENTS

- Apparent tension in CP-violating parameters from Kaon decays could be explained by a right-handed charged weak current, which would be detectible with Hadronic EDM experiments
- Due to large theoretical uncertainties in Hg, present constraints on such a model are very weak
- The upcoming radium measurement will be sensitive to this possibility

V. Cirigliano, W. Dekens, J. de Vries, and E. Mereghetti, Phys. Lett. B 767, 1 (2017) arXiv:1708.00797v2

TWO-HIGGS DOUBLET

- 2HDM is a simple extension to the SM allowing for CP-violation and natural mechanisms for baryogenesis
- Radium has strong sensitivity to 2HDM, in spite of electroweak nature of theory
- Complementary to electron EDM, which exhibits interference

S. Inoue, M. J. Ramsey-Musolf, Y. Zhang Phys. Rev. D 89, 115023 (2014) C.-Y Chen, H.-L Li, M. J. Ramsey-Musolf, Phys. Rev. D 97, 015020 (2018)

RADIUM MOLECULES

- Because of its high degree of polarization, the ground and excited states of SrF have about the same bond length
- Which makes vibrational modes difficult to excite
- This makes SrF one of the (rare) laser-coolable molecules

RADIUM MOLECULES

- Because of its high degree of polarization, the ground and excited states of SrF have about the same bond length
- Which makes vibrational modes difficult to excite
- This makes SrF one of the (rare) laser-coolable molecules

Guess who is similar to strontium...

Sr F RaF is also thought to be laser coolable Phys. Rev. A 82, 052521 arXiv: atom-ph/1302.5682

38

56

Sr

Strontium

87.62

[Kr]5s² 5.6949

Ba

¹S₀

¹S₀

MOLECULES AND EDMS

$$E pprox k_e rac{e}{r^2} pprox$$
 290 MV/cm

A more careful analysis tells us that a measurement in RaF with a given sensitivity is just as good as one in neutral radium with a field of **130 MV/cm**

Phys. Rev. A 90, 052513 (2014)

Compare with 250 kV/cm in the new generation of electrodes

Electron EDM experiments have been taking advantage of molecules in beams for many years (courtesy ACME experiment)

MOLECULES AND EDMS

- However the lifetime in beam experiments is very short
 - ThO: 1.8 ms
 - Radium Atom Trap Experiment: 40 s
- Atom trap experiments have a significant advantage in lifetime, even more than the molecule enhancement alone
- A RaF trapped-atom experiment would posses octupole, molecule, and lifetime enhancements
- Assuming
 - 1% production and extraction efficiency
 - .01% trapping efficiency
 - Current transfer and detection efficiencies
 - 1 Ci Ra-225
- Gives 1-sigma sensitivity 4x10⁻³¹ e-cm equivalent Ra EDM sensitivity
- Standard model background for radium between 7x10⁻³² e-cm and 1x10⁻³⁰ e-cm
 - J. of High Energy Phys., 2016, 67 (2016)

ATOM TRAPPERS @ ARGONNE

Office of Science

DOE Office of Nuclear Physics

