LUX Sensitivity to Effective Field Theory Interactions

Nicole A. Larsen

CIPANP 2018 31 May 2018

Direct Detection Basics

- WIMP-nucleon recoil spectrum is approximately a decaying exponential
- f(v) depends on halo model:
 - "Spherical cow" model: Maxwellian distribution truncated at galactic v_{escape} = 544 km/s
 - Accounts for Earth's motion through galaxy (220 km/s + annual modulation)
- Local dark matter density also depends on halo model ($\rho_0 \sim 0.3 \text{ GeV/cm}^3$)
- Differential cross section: $\frac{d\sigma}{dE_R} = \frac{m_A}{2\pi v^2} |\mathcal{M}|^2$ FERMI'S GOLDEN RULE

Scattering amplitude |M|² contains all the particle physics

An EFT Framework for Direct Detection

Standard SI+SD-only WIMP scattering analyses assume a point-nucleus limit with non-relativistic momenta but...

- Tension between experiments and the lack of a definitive positive detection suggest it is prudent to look for new interactions!
 - Parton momenta inside the nucleus are not necessarily small (q ~ 1/r)
 - New operators could add corrections to SI or SD interactions that are momentumor velocity-dependent...
 - ... or produce entirely new nuclear responses that interfere with SI, SD interactions
- Would like to address possible WIMP-nucleon interactions in a complete and model-independent way

Fitzpatrick et al. arXiv:1203.3542 Fitzpatrick et al. arxiv:1211.2818 Anand et al. arXiv: 1308.6288 Anand et al. arXiv: 1405.6690

A Complete Set of EFT Interactions

$$\mathcal{L}_{ ext{int}} = c \; \Psi_\chi^* \mathcal{O}_\chi \Psi_\chi \Psi_N^* \; \mathcal{O}_N \Psi_N = \sum_{i=1}^{\mathcal{N}} \left(c_i^{(n)} \mathcal{O}_i^{(n)} + c_i^{(p)} \mathcal{O}_i^{(p)}
ight)$$

- O_i restricted to be Galilean-invariant and Hermitian
- Allowed building blocks are WIMP spin S_{χ^2} nucleon spin S_N , incident velocity v^2 , momentum transfer q^2 .

SI Interaction
$$\mathcal{O}_{1} = 1$$
 $\mathcal{O}_{9} = i\vec{S}_{\chi} \cdot (\vec{S}_{N} \times \vec{q})$
Cannot obtain at lowest order $\mathcal{O}_{2} = (v^{\perp})^{2}$ $\mathcal{O}_{10} = i\vec{S}_{N} \cdot \vec{q}$
 $\mathcal{O}_{3} = i\vec{S}_{N} \cdot (\vec{q} \times \vec{v}^{\perp})$ $\mathcal{O}_{11} = i\vec{S}_{\chi} \cdot \vec{q}$
SD Interaction $\mathcal{O}_{4} = \vec{S}_{\chi} \cdot \vec{S}_{N}$ $\mathcal{O}_{12} = \vec{S}_{\chi} \cdot (\vec{S}_{N} \times \vec{v}^{\perp})$
 $\mathcal{O}_{5} = i\vec{S}_{\chi} \cdot (\vec{q} \times \vec{v}^{\perp})$ $\mathcal{O}_{13} = i(\vec{S}_{\chi} \cdot \vec{v}^{\perp})(\vec{S}_{N} \cdot \vec{q})$
 $\mathcal{O}_{6} = (\vec{S}_{\chi} \cdot \vec{q})(\vec{S}_{N} \cdot \vec{q})$ $\mathcal{O}_{14} = i(\vec{S}_{\chi} \cdot \vec{q})(\vec{S}_{N} \cdot \vec{v}^{\perp})$
 $\mathcal{O}_{7} = \vec{S}_{N} \cdot \vec{v}^{\perp}$ $\mathcal{O}_{15} = -(\vec{S}_{\chi} \cdot \vec{q})((\vec{S}_{N} \times \vec{v}^{\perp}) \cdot \vec{q})$
 $\mathcal{O}_{8} = \vec{S}_{\chi} \cdot \vec{v}^{\perp}$ $\mathcal{O}_{16} = -((\vec{S}_{\chi} \times \vec{v}^{\perp}) \cdot \vec{q})(\vec{S}_{N} \cdot \vec{q})$
Linear combo. of O_{12} and O_{15}

Nuclear Responses

- All interactions are linear combos. of 6 independent nuclear responses
- These are the leading-order multipoles that show up in terms of the nuclear scattering matrix – depend only on the nuclear physics of the target

SI Interaction
$$\left[\begin{array}{cccc} \mathcal{O}_{1} &= 1 \\ \mathcal{O}_{2} &= (v^{\perp})^{2} \\ \mathbf{Spin-orbit} & \left[\begin{array}{cccc} \mathcal{O}_{3} &= i\vec{S}_{N} \cdot (\vec{q} \times \vec{v}^{\perp}) \\ \mathcal{O}_{3} &= i\vec{S}_{N} \cdot (\vec{q} \times \vec{v}^{\perp}) \\ \mathbf{SD} (\text{both components}) & \left[\begin{array}{cccc} \mathcal{O}_{4} &= \vec{S}_{\chi} \cdot \vec{S}_{N} \\ \mathcal{O}_{1} &= i\vec{S}_{\chi} \cdot \vec{q} \end{array}\right] \cdot \mathbf{SI} \\ \mathbf{SD} (\text{both components}) & \left[\begin{array}{cccc} \mathcal{O}_{4} &= \vec{S}_{\chi} \cdot \vec{S}_{N} \\ \mathcal{O}_{5} &= i\vec{S}_{\chi} \cdot (\vec{q} \times \vec{v}^{\perp}) \\ \mathbf{O}_{13} &= i(\vec{S}_{\chi} \cdot \vec{v}^{\perp})(\vec{S}_{N} \cdot \vec{q}) \\ \mathbf{SD} (\text{longitudinal only}) & \left[\begin{array}{cccc} \mathcal{O}_{6} &= (\vec{S}_{\chi} \cdot \vec{q})(\vec{S}_{N} \cdot \vec{q}) \\ \mathcal{O}_{7} &= \vec{S}_{N} \cdot \vec{v}^{\perp} \\ \mathcal{O}_{8} &= \vec{S}_{\chi} \cdot \vec{v}^{\perp} \\ \end{array}\right] \quad \mathcal{O}_{16} &= -((\vec{S}_{\chi} \times \vec{v}^{\perp}) \cdot \vec{q})(\vec{S}_{N} \cdot \vec{q}) \\ \mathbf{O}_{16} &= -((\vec{S}_{\chi} \times \vec{v}^{\perp}) \cdot \vec{q})(\vec{S}_{N} \cdot \vec{q}) \\ \mathbf{O}_{16} &= -((\vec{S}_{\chi} \times \vec{v}^{\perp}) \cdot \vec{q})(\vec{S}_{N} \cdot \vec{q}) \\ \mathbf{O}_{16} &= -((\vec{S}_{\chi} \times \vec{v}^{\perp}) \cdot \vec{q})(\vec{S}_{N} \cdot \vec{q}) \end{array}$$

Direct Detection of Interactions

The scattering amplitude can then be written as

$$|\mathcal{M}|^{2} \equiv \frac{m_{A}^{2}}{m_{N}^{2}} \sum_{i,j} \sum_{N,N'=n,p} c_{i}^{N} c_{j}^{N'} F_{i,j}^{(N,N')}$$

where:

- c_i, c_j are the WIMP-nucleon coupling constants for operators O_i and O_j
- F_{i,i} is a form factor that contains all the particle and nuclear physics
- Each $F_{i,i}$ is a linear combination of nuclear responses $F_{k} = M, \Sigma^{\prime\prime}, \Sigma^{\prime}, \Delta, \Phi^{\prime\prime}, \Phi^{\prime\prime}$

$$F_{i,j}^{(N,N')} = \sum_{k=\mathrm{M},\Sigma'',\Sigma',\Delta,\Phi'',\widetilde{\Phi}'} a_{ijk} F_k^{(N,N')}$$

 Calculate the F_k numerically using your favorite method, e.g. nuclear shell model

WIMP-Nucleon Sensitivity by Target

M (SI): Response goes as A²; favors heavy targets (e.g. Xe, I).

Σ", Σ' (SD): The two components can appear independently; each favors targets with unpaired neutrons (e.g. 73 Ge, 129 Xe, 131 Xe) or protons (19 F, 127 I).

 Δ (LD): Arises from operators dependent on nucleon velocities. Favors targets with high A.

Φ", Φ' (LSD, tLSD): Favor elements with unfilled orbitals above the *s*-shell; only targets with spin > 1 are sensitive (e.g. ¹³¹Xe).

Plot adapted from Fitzpatrick et al. arXiv:1203.3542 Xenon is sensitive to all but WIMPproton Σ ", Σ '

This can be overcome by:

- The large size and scalability of xenon-based detectors
- Complementarity of targets

Selected WIMP-Nucleon Recoil Spectra in Xenon

- SI and SD spectra are approximately decaying exponentials.
- For other operators, the momentum dependence affects the spectral shape.
- Spectra for large m_x stay flat or rise out to O(100-1000) keV!

An EFT Analysis of the First LUX Science Run

- LUX is a dual-phase 370-kg xenon-based TPC whose 2013, 2014-2016 runs set world-leading** constraints on SI WIMP-nucleon scatters (see M. Szydagis talk)
- 2013 LUX WIMP search run: 118 kg fiducial volume * 94.98 livedays

- For EFT interactions:
 - Large upper energy threshold desirable but limited by available calibration data and ^{83m}Kr events in the WIMP search dataset
 - Choose $E_{upper} = 30 \text{ keV}_{ee}$ (Kr mean 5 σ) = 168.7 keV_{nr}. Limits are robust to +/- 1 σ variations in the NR model
 - Remove events >3σ below the NR band mean
 - 4 events observed; 4.78 background events expected
 - Computationally expensive => Feldman-Cousins cut-and-count approach

** XENON1T now in the lead

Comparing LUX to Other Experiments

	Experiment	Target	Exposure	Reference
Consistent with Background	LUX	Xe	118 kg * 94.98d	PRL 116, 161301 (2016)
	SuperCDMS	Ge	577 kg*d	PRD 91, 092004 (2015) and PRL 112, 241302 (2014)
	PICO-2L	C_3F_8	129 kg*d	PRD 93, 061101 (2016) and PRL 114, 231302 (2015)
	PICO-60 (CF ₃ I)	CF ₃ I	1335 kg*d	PRD 93, 052014 (2016)
	PICO-60 (C ₃ F ₈)	C_3F_8	1167 kg*day	PRL 118, 251301 (2017)
	XENON100	Xe	34 kg * 224.6 d	PRD 96, 042004 (2017)
jections Events	DAMA/LIBRA	Nal	0.82 ton * year	EPJ C56 333-355 (2008) and JCAP04 ID010 (2009)
	CDMS-ii Si	Si	23.4 kg*d	Arxiv:1304.4279v3
	LZ	Xe	5600 kg * 1000d	Arxiv:1509.02910
	PICO-250	C ₃ F ₈	250 kg * 1000d	EPJ Web Conf. 95 (2015) 04020
Pro 1				

Limits on Selected Operators

Limits on Selected Operators

Isospin-Independent Limits

- Limits on previous slides not model-independent (restrict either WIMPneutron or WIMP-proton coupling strength to be zero)
- For a fixed WIMP mass, can set limits on WIMP-p and WIMP-n interactions in arbitrary combinations, i.e. define an allowed region in c_p vs. c_n space
- For a multi-isotope target with isotopes A_i:

$$\sum_{A_i} \left(\frac{c_p}{c_p^{lim(A_i)}} \pm \frac{c_n}{c_n^{lim(A_i)}} \right) < 1 \qquad (\text{Reduces to} \left(\frac{c_p}{c_p^{lim}} \pm \frac{c_n}{c_n^{lim}} \right) < 1$$
for a single-isotope target)

- (c_p^{lim} is the limit on c_p assuming c_n = 0 and vice versa; c_p^{lim(Ai)}, c_n^{lim(Ai)}
 additionally assume only isotope A_i contributes to event rate)
- Standard SD limits often presented in this way.

Limits on Selected Operators

Limits on Selected Operators

Operator Interference

- Operators interfere pairwise
 - Neutron-proton interference for a single O_i (e.g. "xenophobic" dark matter)
 - Two operators O_i and O_i can interfere
- Such scenarios may relieve tension between experiments
- Or drive the selection of targets to probe previously inaccessible regions in WIMP parameter space
 Projections of 4D O₈/O₉ Interference Eigenvectors

 $\widehat{\underline{a}}_{\infty} 0$

– Xe

– Si – Na Solid: Constructive

Dashed: Destructive

16

 In general, maximal interference found by solving a 4x4 eigenvector problem:

Interference Between Selected Operators

Limits on

$$||C||^2 = C_8^{(n)2} + C_8^{(p)2} + (C_9^{(n)} \times m_p)^2 + (C_9^{(p)} \times m_p)^2$$

are evaluated at the maximally destructive eigenvector for a xenon target for a benchmark WIMP mass of 50 GeV and recoil energy $E_r = 30 \text{ keV}_{nr}$:

$$C_8^{(n)}$$
: $C_8^{(p)}$: $(C_9^{(n)} \times m_p)$: $(C_9^{(p)} \times m_p)$
= 0.1803 : -2.603 : 0.1491 : 0.9367

 $\mathcal{O}_8/\mathcal{O}_9$ maximally destructive interference

- Xenon-based experiments are competitive at all masses
- PICO-type experiments (unpaired proton) are complementary
- A dark matter explanation for event excesses from DAMA/LIBRA and CDMS-ii Si is ruled out – if XENON/LUX doesn't see it, then PICO will!
- Other interference sectors yield similar results (not shown)

Summary and Conclusion

- LUX has previously set world-leading limits on SI WIMP-nucleon interactions.
- We set limits on each momentum- and velocity-dependent operator in the effective field theory framework developed by Anand + Fitzpatrick + Haxton, et al. using data from the initial 95-day first LUX dark matter search.
 - Individually for each nucleon...
 - ... in an isospin-independent way....
 - ... and for destructive interference scenarios

Summary and Conclusion

- LUX has previously set world-leading limits on SI WIMP-nucleon interactions.
- We set limits on each momentum- and velocity-dependent operator in the effective field theory framework developed by Anand + Fitzpatrick + Haxton, et al. using data from the initial 95-day first LUX dark matter search.

For all operators (except WIMP-proton Σ " and Σ ') and WIMP masses above ~12 GeV, LUX is able to set stringent limits. Even in maximally destructive interference scenarios, LUX is competitive.

Ge targets are sensitive to EFT interactions for low-mass WIMPs. At high masses, Xe targets win in all but the most fine-tuned scenarios.

For coverage of WIMP-proton Σ " and Σ ' interactions PICO-type experiments (F targets) are complementary to LUX/LZ/XENON1T.

In all cases, an EFT dark matter explanation for DAMA is ruled out!

Summary and Conclusion

- LUX has previously set world-leading limits on SI WIMP-nucleon interactions.
- We set limits on each momentum- and velocity-dependent operator in the effective field theory framework developed by Anand + Fitzpatrick + Haxton, et al. using data from the initial 95-day first LUX dark matter search.

Look forward to results from the full LUX exposure incorporating:

- The full set of calibrations
- Improved background models
- S1 pulse shape discrimination
- And a larger energy window to probe high-mass WIMP parameter space

THANK YOU!

Λ

(

Ν

Berk	keley	Lab	/	UC

Bob Jacobsen	PI, Professor
Murdock Gilcrease	Senior Scientist
Kevin Lesko	Senior Scientist
Michael Witherell	Lab Director
Peter Sorensen	Divisional Fellow
Simon Fiorucci	Project Scientist
Evan Pease	Postdoc
Daniel Hogan	Graduate Student
Kelsey Oliver-Mallory	Graduate Student
Kate Kamdin	Graduate Student

Brown University

Richard Gaitskell	PI, Professor
Junhui Liao	Postdoc
Samuel Chan	Graduate Student
Dongqing Huang	Graduate Student
Casey Rhyne	Graduate Student
Will Taylor	Graduate Student

James Verbus

University of Edinburgh

PI, Assistant Professor

Ex-Postdoc

Alexander Murphy	PI, Professor
Paolo Beltrame	Ex-Research Fellow
Maria F. Marzioni	Graduate Student
Tom Davison	Graduate Student

Lawrence Livermore National Laboratory

Adam Bernstein	PI, RED group leader
Kareem Kazkaz	Physicist
Jingke Xu	Postdoc
Brian Lenardo	Graduate Student

S Stanislaus State

Wing To

Berkelev Imperial College London

Henrique Araujo	PI, Professor
Tim Sumner	Professor
Alastair Currie	Ex-Postdoc
Adam Bailey	Ex-Graduate Student
Khadeeja Yazdani	Ex-Graduate Student
Nellie Marangou	Graduate Student

Dan Akerib	PI, Professor
Thomas Shutt	PI, Professor
Tomasz Biesiadzinski	Research Associate
Christina Ignarra	Research Associate
Alden Fan	Research Associate
Wei Ji	Graduate Student
TJ Whitis	Graduate Student

LIP Coimbra LI

Isabel Lopes	PI, Professor
José Pinto de Cunha	Assistant Professor
Vladimir Solovov	Senior Researcher
Alexandre Lindote	Postdoc
Francisco Neves	Auxiliary Researcher
Claudio Silva	Research Fellow
Paulo Bras	Graduate Student

PennState

Carmen Carmona **Emily Grace**

Douglas Tiedt

es	
	PI, Professor
	Graduate Student

Postdoc

PI, Assistant Professor

SDSTA / Sanford Lab David Taylor Senior Engineer

Markus Hom **Research Scientist**

UNIVERSITY^{AT}**ALBANY** State University of New York

latthew Szydagis	PI, Assistant Professor
Breg Rischbieter	Graduate Student
ladison Wyman	Graduate Student

TEXAS A&M Ñ

> PI, Professor Graduate Student

> > PI, Professor

Postdoc

Project Scientist

Graduate Student

Graduate Student

Graduate Student

Graduate Student

PI, Professor

Project Scientist

Graduate Student

Senior Machinist

PI, Assistant Professor

Graduate Student

Postdoc

Ex-Graduate Student Ex-Graduate Student

Berkelev

Robert Webb

Paul Terman

Daniel Mckinsey Ethan Bernard Elizabeth Boulton Junsong Lin Brian Tennyson Lucie Tvrznikova Vetri Velan

DAVIS UNIVERSITY OF CALIFORNIA

Mani Tripathi Aaron Manalaysay James Morad Sergey Uvarov Jacob Cutter Dave Hemer

WISCONSIN

Kimberly Palladino Shaun Alsum Rachel Mannino

UC SANTA BARBARA

larry Nelson	PI, Professor
ally Shaw	Postdoc
cott Haselschwardt	Graduate Student
Curt Nehrkom	Graduate Student
1elih Solmaz	Graduate Student
ean White	Engineer
usanne Kyre	Engineer

University College London **≜UCL**

Chamkaur Ghag Jim Dobson Umit Utku

S

S

Ν

С

S

Carter Hall Jon Balaithy

Graduate Student

PI, Professor

PI, Professor

Graduate Student

Postdoc

Scott Hertel Christopher Nedlik

UNIVERSITY ROCHESTER

Frank Wolfs Wojtek Skulski Eryk Druszkiewicz Dev Aashish Khaitan Mongkol Moongweluwan

PI, Professor Senior Scientist Electrical Engineer Graduate Student Graduate Student

PI. Assistant Professor

Graduate Student

University of Sheffield

Vitaly Kudryavtsev Reader, Particle Physics Elena Korolkova Research Associate David Woodward Research Associate Graduate Student

Peter Rossiter

PI. Professor

