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'Co'smic-rays and high-energy neutrinos

| The diffuse neutrino flux
: Searches for Neutrino Sources
Usmg natural neutrlnos to study high-energy neutrino interactions
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Cosmic-rays and high-energy neutrinos

We observe cosmic-rays with energies up
to 3*1020 eV (50 Joules)

+ .
Below 10"~ 1 eV, most cosmic-rays
probably come from supernova remnants

¢ Composition, gamma-ray spectra...
Beyond that, we don’t know

¢ Cosmic-rays are bent by magnetic fields, so
don’t point back to their sources

& Active galactic nuclei are popular sources

Galaxies with supermassive black holes
which accrete matter, emitting jets along the
galaxies axis.

We need a new probe ... neutrinos

¢ Produced by beam-gas or beam-photon
interactions in/near their production sites, or
In-transit 2




Two approaches to the astrophysical
neutrino fluxes

(1) Known cosmic-ray flux, and assumed beam gas/photon
density

¢ Maximum density corresponds to opacity=1, so cosmic-rays just
barely escape from the accelerators.

+ Waxman-Bahcall bound - optically thick source
(2) Measured photon flux, assuming that photons come from =°,
and the expected 70 ratio

¢ Electron accelerators may only produce synchrotron radiation

¢ Sign of hadronic acceleration: 70 MeV y from n° decay at rest

+ Optically thin source

Both calculations indicate that a 1 km3 detector is needed to see
astrophysical neutrinos



lceCube

1 km3 neutrino observatory
95160 digital optical modules (DOMSs)
¢ 10" phototube in a 13" sphere

& 86 strings with 60 modules

/8 on a 125 m hexagonal grid
8 denser “DeepCore” strings in center

¢ 1450 to 2450 m deep
160 station - 1 km? surface array

Completed in December, 2010
98% of DOMs working perfectly

>99% live time

¢ No physicists around to mess with
hardware.

Surface Lab
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The lceCube Collaboration
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Backgrounds: atmospheric u and v

Produced when cosmic-rays interact in the upper
atmosphere, producing hadronic showers

lceCube sees ~ 2800 Hz of u from =/K decay

¢ Huge background for downward-going searches
Conventional v from n/K/u decay

¢ Mostly v, **

p—proton
n—neutron

it, 1, n'—pions
|, | —muons
¢ —electron
¢'—positron
v—neutrino

_ y—gamma-ray

¢ Competition between n/K decay & = SuperK y,
interaction softens spectrum. S Fréuer,
Prompt v from charm/bottom decay _"F ¢ TS, cuimoim,:
o 50% Vo 50% v, :Z ,o-é_ s ?Z’%E??Z ding
¢ Follows cosmic-ray 3 E & This Workv, |
spectrum ¢ o
+ Not yet observed - Promee k.
*** Neutrino telesco_pes cannot generally distinguish . o
between v/v; so | will lump them together e L b e g

log,  (E, [GeV])



Extra-terrestrial v search strategies

Backgrounds are large
¢ Downgoing atmospheric u
500:00 pu: 1 v
¢ Atmospheric v
Ratio depends on energy
Separation strategies
¢ Point sources

¢ Energy spectra
Harder than atmospheric (?)

+ Upward-going vs. downward-going

N.b. downward-going have large u
background, but atmospheric v may self-
veto

¢ v flavor ratio — atmospheric v_flux ~ 0
No v_signal seen so far



Bert & Ernie

The first clear evidence for extra-terrestrial neutrinos came from
a search for extremely high-energy neutrinos

Both have E ~ 1 PeV :too low to be from GZK neutrinos

Both events are ‘golden’ cascades, well contained in the
detector with well reconstructed energies

Atmos. Background: 0.082 + 0.004 (stat.)fg'gf(syst.) events
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Contained event search

» Bert and Ernie inspired the “HESE”" high-energy starting event
search, which led to the discovery of astrophysical n
» Today: HESE 6 year sample: 82 events in 2078 live-days
& 2 obvious background events excluded
¢ Expected atmospheric u background 25 + 7 events
+ Estimated from data using double-wall veto study
¢ Estimated atmospheric v background 16*'1 , events

. Best fit dN/JE ~ E -292%93in range 60 TeV < Egeposieq < 10 PeV

[Southern Sky (downgoing)] [Northern Sky (upgoing)]

Energy Threshold

: |EER Background Atmospheric Muon Flux

IceCube Preliminary | |mmm Bkg. Atmospheric Neutrinos (=/K)

= Atmospheric Neutrinos (90% CL Charm
102 e — Bkg.+Signal Best omponent Astrophys
Bkg. +Signal Best: omponent Astrophysi
aee Data
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Through-going v

Upward-going through-going tracks in 8 years of data
+ Fit to conventional + prompt + atmospheric v mixture

Best fit dN/dE ~ E-22* 0.1

& Spectral index is in tension with the contained event study,
but centered at considerably higher neutrino energies

¢ Flux agrees in overlap region

1074 5
mmm Conv. atmospheric v, + v, (best-fit)
T 1070 - Prompt atmospheric v, + 7, (flux limit (2016))
wn 3
Tw mm Astrophysical v, + v, (best-fit)
1070 5
7
% 1077
O
~~
I-':_
s 1078
N.A
1077 - |
1 IceCube Preliminary
— - —

103 104 10° 109 107
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Flux, ¢o/10-'® GeV-' cm? s

Are astrophysical v, and v, different?

Astrophysical flux has been fit by a single power law dN/dE ~ E

lceCube observes tension between different classes of analyses
¢ Contained event (mostly cascades) studies find y ~2.5-3.0
¢ Throughgoing u studies find y ~ 2.1 + 0.1, at much higher energies

Here: fit starting track and cascade components separately

¢ Probe similar energy ranges

4.0 R4 )
B Starting Tracks Only N

3.54 A Cascades Only \
® C(Cascades and Starting Tracks

3.0 1 Through-going Tracks
2.5 1
2.0 1
1.5 1

1.0 1

0.5 1

0.0

Spectral Indices dN/dE ~ E™
Vease = 2.62 £ 0.08

Yirack = 2-43 9% 4 30

Y wack IS Detween cascades &
throughgoing n results.
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Where do these neutrinos come from?

B0

Big event seen June 11, 2014
¢ 2.6 PeV deposited in detector
¢ E likely ~ 3-5 PeV
¢ E likely ~5-10 PeV

Direction known to ~ 0.3°

+ Nothing obviously interesting
from that direction

— 50% error circle @ Galactic plane e 3FGL
= = 99% error circle ¢ 2FGL X  TeVCat
18 . . .
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=] ° .
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5 NI .
£10 e
o . .
(@]
8
6 \ ’
4 T T T T T
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7 year neutrino sky map

Using all neutrino events is much more sensitive than just using
starting events
2431 live days, with 711,000 events

Throughgoing muons, mostly lower energy
¢ ~90% v purity in Northern Hemisphere; mostly u in South

No significant excesses galactic plane

+15° BN L A Y A .
24h AR
150 \ - 3
Backgrounds are derived
from data at similar zenith
angle, but with scrambled
azimuthal angle.




=== Pre-trial (Disc. Potential) = + ANTARES (Sensitivity)
= * Pre-trial (Sensitivity) + Upper Limits (90%)

Point source searches = oici., ¢

Flux limits calculated for assumed %'
2 e N |
E-“ energy spectrum E 5
¢ Limits depend on declination :‘T o-2|
== zenith angle in IceCube LI
¢ E2) ~10"2TeV cm2 s constrain 10" ;—— B a5 o
Declination (sin 0)

many older theory predictions
~ Comparable to photon flux
All-sky survey, pre-selected sources and source class stacking
& e.g. blazars, supernova remannts, etc.
Searches for gamma-ray bursts, using GRB position/times
determined from photon observations

Periodic/flaring sources
& Triggered (by other observations) and untriggered

¢ LIGO gravity wave events
14



GW170817 and gamma-ray bursts

A ‘classic’ merger of two neutron stars to .
form a black hole.

100 second long gravitation waves {
seen by LIGO e

¢ Distance =40 + 8 Mpc
Classic long GRB, but jets were slightly off axis.

No neutrinos seen

+ Off-axis geometry is sub-optimal for high-energy neutrinos

A larger (previous) search by lceCube looked for neutrinos
from 1172 gamma-ray bursts seen by the Gamma-ray
Coordinates Network (GCN)

+ No signals were seen.

¢ GRBs are responsible for less than 1% of the diffuse flux
seen by lceCube

LLLLL
VVVVVV
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Other source Classes

Autocorrelation analyses find that a large number of sources
must contribute to the observed flux.

¢ Disfavors very source classes where objects are very rare.

A combined lceCube/Fermi y-ray telescope study finds that
star forming galaxies can contribute at most ~20% of the
observed diffuse flux.

Studies of the galactic plane show that there may be a small
contribution to the flux coming from our galaxy, but most of
the flux is not.

16



Blazar search

Stacked search of blazars seen
by the Fermi-LAT gamma-ray
telescope

¢ Sum signal from 862 blazars

(and, separately, by some E

sub-categories) '%
Equal weighting, or weighting g
by gamma-ray flux %f

No excess seen

For an dN/dE ~ E-%° neutrino
spectrum, blazars produce <27% of
the diffuse flux seen by lceCube

¢ If spectrum is E-22, limit loosens to
50% of observed flux

1076 H{—— Tsi=—25,E,>10 TeV [.:..coonn. y-weighting -
— Tg=-22E,>10TeV| | 5 5 :

2LAC Blazar Upper Limit = gequa,l wéighting ]

|
3

I SR e S AU SR S ]

10—10

102

Neutrino Energy [GeV]
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Multi-messenger astronomy:
AGN in outburst?

On Sept. 22, 2017, IceCube observed a single high-energy
probable-neutrino track-like event

+ Triggered follow-up observations

o Fermi/LAT satellite & Magic Cherenkov telescope observe y-rays
from 800 MeV to > 100 GeV

+ Multiple radio & optical observations
Location consistent with a known blazar TXS 0506+056

¢ Optical emission and y-rays enhanced during that period
It was ‘flaring’

Redshift measured (post-v) z=0.3365 + 0.0010
¢ Photons with E> ~ 300 GeV are attenuated by absorption

Situation still in flux...
arXiv:1802.01939, GCN Circular 21916, Atel 10791 & 10,817
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o,y measurement

At energies above 30 TeV, the Earth absorbs neutrinos

1 year of up-going v, data was binned in (E, cos(0,))
+ Fit to standard cocktail, with absorption allowed to vary
¢ Cross-section is a multiple (“R”) of standard model cross-section
¢ Neutral-current included; reduces neutrino energy

R=1.30 *0-21 /.o (stat) %039 4 .5 (Syst.) 6.3 TeV < E, < 980 TeV

Vertical === Neutrino
""" 180 0.8 -+ Antineutrino
170 0.90 0.7 ﬂ d T, —Weighted combination
Core-mantle > : Wi —This result
boundary 160 0.75 > o 0.6 .

= 2 I
2150 2 Eos

.............. ° INpp— . =« e e e = = 3 o
- 0.60o *
2140 a S 0.4 —
c c -~
2 5 = mw
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= 01 Data
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Inelasticity in contained events

IneIaStiCity y = E hadronic shower/Ev
& Predicted by standard weak interaction model
¢ Inelasticity distributions are different for v, vfor E, <10 TeV

Analysis uses 2650 starting track events (v,) in 5 years of
data, selected by a machine learning approach

¢ 965 similarly-selected cascades used in some global fits
A second machine finds E  ,s.a0e, E,s Yuis

Yus ~ Y butaccounts for missing energy

A starting track event with
E ... =64 TeV
E,=724TeV

y vis=0'08

20



Mean inelasticity <y>

Parameterize do/dy ~ (1+¢(1-y)?)y *1
+ Motivated by low-x region, where xq(x,Q2) ~x*
g, A are heavily correlated, so fit for <y>and A
& <y> decreases with energy, as expected
+ |In agreement with CSMS calculation

¢ Used to measure atmospheric v/v ratio and to observe
charm production in v interactions from 1.5 to 340 TeV

0.7
0.6 1

0.5 o ’\\$Q

N 0.4
>

\%

0.3 1

0.2 1

v CSMS
v CSMS
Flux-averaged CSMS

0.1 1

0,0 T ML | T ML | T ML | T ML | T T
10? 10° 10* 10° 10° 107 21

E. (GeV)



Conclusions

lceCube has observed a flux of diffuse astrophysical neutrinos
with a significance well above 5c.

¢ For a single power law fit, dN/dE ~ E -20-3.0
¢ Tension between different spectral measurements -> more complex
spectrum?

The flux level is roughly around the maximum expected level

¢ Opacity=1?
We have not observed any clear continuous or episodic point
sources, and have put significant constraints on many interesting
classes of sources.

There are reports of an interesting coincidence between a high-
energy lceCube event and enhanced gamma-ray activity from

Fermi, detection of > 100 GeV gamma rays from the Magic
telescopes, from a flaring BL Lac (Blazar) object.

& Stay tuned... -



Extra/backup
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The v flux is nearly saturated

The flux is near (or above) the ‘Waxman-Bahcall bound, which
corresponds to opacity=1

+ Different spectral indices complicate comparison
¢ Cosmic-rays just escape from the source

For most v prediction models, one must push parameters
upward to explain the observed flux

¢ |t should be easy to find the sources.

1076 N T T T T T T T T T T T T T T T]
~ - Conv. atmospheric (v, +v,,)
| i
E == Prompt atmospheric (v, +v,, 90% C.L.) ||
'_‘U BN Astrophysical (v, +v, +v;)
| . : |
N Waxman Bahcall
BERTRU SN - SRS R -
i - | ]
> :
o :
<) i
S
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oA
Il i |

- T E—
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Letting the flavor ratio float

Based on inelasticity study, to
be described later 100% v,

11 TeV < E_cage <410 TeV
8.6 TeV < Eq; <207 TeV

Much closer match than
combined fit w/ throughgoing
tracks

¢ Results still valid for complex
spectra

100% v & 100 v, excluded

Not yet sensitive to different
standard acceleration models 70

Other studies find similar
results

Confidence Level (%)
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