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Cosmic-rays and high-energy neutrinos
■ We observe cosmic-rays with energies up 

to 3*1020 eV (50 Joules)
■ Below 1015±1 eV, most cosmic-rays 

probably come from supernova remnants
◆ Composition, gamma-ray spectra…

■ Beyond that, we don’t know
◆ Cosmic-rays are bent by magnetic fields, so 

don’t point back to their sources
◆ Active galactic nuclei are popular sources

✦ Galaxies with supermassive black holes 
which accrete matter, emitting jets along the 
galaxies axis.

■ We need a new probe … neutrinos
◆ Produced by beam-gas or beam-photon 

interactions in/near their production sites, or 
in-transit 2



Two approaches to the astrophysical 
neutrino fluxes

■ (1) Known cosmic-ray flux, and assumed beam gas/photon 
density
◆ Maximum density corresponds to opacity=1, so cosmic-rays just 

barely escape from the accelerators.
◆ Waxman-Bahcall bound - optically thick source

■ (2) Measured photon flux, assuming that photons come from p0, 
and the expected p0:p± ratio
◆ Electron accelerators may only produce synchrotron radiation
◆ Sign of hadronic acceleration: 70 MeV g from p0 decay at rest
◆ Optically thin source

■ Both calculations indicate that a 1 km3 detector is needed to see 
astrophysical neutrinos
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■ 1 km3 neutrino observatory
■ 5160 digital optical modules (DOMs)

◆ 10” phototube in a 13” sphere
◆ 86 strings with 60 modules

✦ 78 on a 125 m hexagonal grid
✦ 8 denser “DeepCore” strings in center

◆ 1450 to 2450 m deep
■ 160 station - 1 km2 surface array
■ Completed  in December, 2010
■ 98% of DOMs working perfectly
■ >99% live time

◆ No physicists around to mess with 
hardware.
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310 collaborators from 52 institutions in 11 countries
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Backgrounds: atmospheric µ and n
■ Produced when cosmic-rays interact in the upper 

atmosphere, producing hadronic showers
■ IceCube sees ~ 2800 Hz of µ from p/K decay

◆ Huge background for downward-going searches
■ Conventional n from p/K/µ decay

◆ Mostly nµ ***

◆ Competition between p/K decay &                                   
interaction softens spectrum.   

■ Prompt n from charm/bottom decay
◆ 50% nµ, 50% ne

◆ Follows cosmic-ray                                                             
spectrum 

◆ Not yet observed

*** Neutrino telescopes cannot generally distinguish 
between n/n; so I will lump them together 6



Extra-terrestrial n search strategies 
■ Backgrounds are large

◆ Downgoing atmospheric µ
✦ 500:00 µ: 1 n

◆ Atmospheric n
✦ Ratio depends on energy

■ Separation strategies
◆ Point sources
◆ Energy spectra

✦ Harder than atmospheric (?)
◆ Upward-going vs. downward-going

✦ N.b. downward-going have large µ
background, but atmospheric n may self-
veto

◆ n flavor ratio – atmospheric nt flux ~ 0
✦ No nt signal seen so far
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Bert & Ernie
■ The first clear evidence for extra-terrestrial neutrinos came from 

a search for extremely high-energy neutrinos
■ Both have E ~ 1 PeV ;too low to be from GZK neutrinos
■ Both events are ‘golden’ cascades, well contained in the 

detector with well reconstructed energies
■ Atmos. Background: 0.082 ± 0.004 (stat.)        (syst.) events

■ 2 1-PeV neutrinos Bert Ernie

+0.06
-0.04
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Contained event search
■ Bert and Ernie inspired the “HESE” high-energy starting event 

search, which led to the discovery of astrophysical n

■ Today: HESE 6 year sample:  82 events in 2078 live-days

◆ 2 obvious background events excluded

◆ Expected atmospheric µ background 25 ± 7 events

✦ Estimated from data using double-wall veto study

◆ Estimated atmospheric n background 16+11
-4 events

■ Best fit dN/dE ~ E -2.92
±

0.3 in range 60 TeV < Edeposited < 10 PeV
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Through-going n
■ Upward-going through-going tracks in 8 years of data

◆ Fit to conventional + prompt + atmospheric n mixture
■ Best fit dN/dE ~ E-2.2 ± 0.1

◆ Spectral index is in tension with the contained event study, 
but centered at considerably higher neutrino energies

◆ Flux agrees in overlap region
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Are astrophysical nµ and ne different?
■ Astrophysical flux has been fit by a single power law dN/dE ~ E -g

■ IceCube observes tension between different classes of  analyses

◆ Contained event (mostly cascades) studies find g ~2.5-3.0

◆ Throughgoing µ studies find g ~ 2.1± 0.1, at much higher energies

■ Here: fit starting track and cascade components separately

◆ Probe similar energy ranges

g

Spectral Indices dN/dE ~ E-g

gcasc = 2.62 ± 0.08
gtrack = 2.43 +0.28

-0.30

g track is between cascades & 
throughgoing µ results.
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Where do these neutrinos come from?
■ Big event seen June 11, 2014

◆ 2.6 PeV deposited in detector
◆ Eµ likely ~ 3-5 PeV
◆ En likely ~ 5-10 PeV

■ Direction known to ~ 0.3o

◆ Nothing obviously interesting          coming 
from that direction
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7 year neutrino sky map
■ Using all neutrino events is much more sensitive than just using 

starting events
■ 2431 live days, with 711,000 events
■ Throughgoing muons, mostly lower energy

◆ ~90% n purity in Northern Hemisphere; mostly µ in South
■ No significant excesses galactic plane

Backgrounds are derived 
from data at similar zenith 
angle, but with scrambled 
azimuthal angle.
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Point source searches
■ Flux limits calculated for assumed                                            f ~

E-2 energy spectrum

◆ Limits depend on declination

✦ == zenith angle in IceCube

◆ E2f ~ 10-12 TeV cm-2 s-1 constrain                                                          
many older theory predictions

✦ ~ Comparable to photon flux

■ All-sky survey, pre-selected sources and source class stacking

◆ e.g. blazars, supernova remannts, etc.

■ Searches for gamma-ray bursts, using GRB position/times 
determined from photon observations

■ Periodic/flaring sources

◆ Triggered (by other observations) and untriggered

◆ LIGO gravity wave events

Declination (sin d)
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GW170817 and gamma-ray bursts
■ A ‘classic’ merger of two neutron stars to                            

form a black hole.

■ 100 second long gravitation waves                                    

seen by LIGO

◆ Distance =40 ± 8 Mpc

■ Classic long GRB, but jets were slightly off axis.

■ No neutrinos seen

◆ Off-axis geometry is sub-optimal for high-energy neutrinos

■ A larger (previous) search by IceCube looked for neutrinos 

from 1172 gamma-ray bursts seen by the Gamma-ray 

Coordinates Network (GCN)

◆ No signals were seen.

◆ GRBs are responsible for less than 1% of the diffuse flux 

seen by IceCube 
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Other source Classes

■ Autocorrelation analyses find that a large number of sources 
must contribute to the observed flux.
◆ Disfavors very source classes where objects are very rare.

■ A combined IceCube/Fermi g-ray telescope study finds that 
star forming galaxies can contribute at most ~20% of the 
observed diffuse flux.

■ Studies of the galactic plane show that there may be a small 
contribution to the flux coming from our galaxy, but most of 
the flux is not.
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Blazar search
■ Stacked search of blazars seen       

by the Fermi-LAT gamma-ray 
telescope
◆ Sum signal from 862 blazars         

(and, separately, by some                  
sub-categories)
✦ Equal weighting, or weighting            

by gamma-ray flux
■ No excess seen
■ For an dN/dE ~ E-2.5 neutrino 

spectrum, blazars produce <27% of 
the diffuse flux seen by IceCube
◆ If spectrum is E-2.2, limit loosens to 

50% of observed flux

17



Multi-messenger astronomy: 
AGN in outburst?

■ On Sept. 22, 2017, IceCube observed a single high-energy 
probable-neutrino track-like event
◆ Triggered follow-up observations
◆ Fermi/LAT satellite & Magic Cherenkov telescope observe g-rays 

from 800 MeV to > 100 GeV
◆ Multiple radio & optical observations

■ Location consistent with a known blazar TXS 0506+056
◆ Optical emission and g-rays enhanced during that period

✦ It was ‘flaring’
■ Redshift measured (post-n) z=0.3365 ± 0.0010

◆ Photons with E> ~ 300 GeV are attenuated by absorption

Situation still in flux…
arXiv:1802.01939, GCN Circular 21916, Atel 10791 & 10,817 18



snN measurement
■ At energies above 30 TeV, the Earth absorbs neutrinos

■ 1 year of up-going nµ data was binned in (Eµ, cos(qz))

◆ Fit to standard cocktail, with absorption allowed to vary

◆ Cross-section is a multiple (“R”) of standard model cross-section 

◆ Neutral-current included; reduces neutrino energy

■

En (GeV)

R=1.30 +0.21
-0.19 (stat) +0.39

-0.43 (syst.) 6.3 TeV < En < 980 TeV
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Inelasticity in contained events
■ Inelasticity y = E hadronic shower/En

◆ Predicted by standard weak interaction model
◆ Inelasticity distributions are different for n, n for En < 10 TeV

■ Analysis uses 2650 starting track events (nµ) in 5 years of 
data, selected by a machine learning approach
◆ 965 similarly-selected cascades used in some global fits

■ A second machine finds E cascade, Eµ, yvis
✦ yvis ~ y, but accounts for missing energy

A starting track event with
Ecasc =64 TeV
Eµ = 724 TeV
y vis=0.08

Direction
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Mean inelasticity <y>
■ Parameterize ds/dy ~ (1+e(1-y)2)y l-1

◆ Motivated by low-x region, where xq(x,Q2) ~x-l

■ e, l are heavily correlated, so fit for <y> and l
◆ <y> decreases with energy, as expected
◆ In agreement with CSMS calculation 
◆ Used to measure atmospheric  n/n ratio and to observe 

charm production in n interactions from 1.5 to 340 TeV
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Conclusions
■ IceCube has observed a flux of diffuse astrophysical neutrinos 

with a significance well above 5s.
◆ For a single power law fit, dN/dE ~ E -2.0-3.0

◆ Tension between different spectral measurements -> more complex 
spectrum?

■ The flux level is roughly around the maximum expected level
◆ Opacity=1?

■ We have not observed any clear continuous or episodic point 
sources, and have put significant constraints on many interesting 
classes of sources.

■ There are reports of an interesting coincidence between a high-
energy IceCube event and enhanced gamma-ray activity from 
Fermi, detection of > 100 GeV gamma rays from the Magic 
telescopes, from a flaring BL Lac (Blazar) object.
◆ Stay tuned… 22



Extra/backup
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The n flux is nearly saturated
■ The flux is near (or above) the ‘Waxman-Bahcall bound, which 

corresponds to opacity=1
◆ Different spectral indices complicate comparison
◆ Cosmic-rays just escape from the source

■ For most n prediction models, one must push parameters 
upward to explain the observed flux
◆ It should be easy to find the sources.

Waxman Bahcall
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Letting the flavor ratio float
■ Based on inelasticity study, to 

be described later
■ 11 TeV < Ecascade < 410 TeV
■ 8.6 TeV < ECC evt < 207 TeV
■ Much closer match than 

combined fit w/ throughgoing
tracks
◆ Results still valid for complex 

spectra
■ 100% ne & 100 nµ excluded
■ Not yet sensitive to different 

standard acceleration models
■ Other studies find similar 

results
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