Muon g-2 experiments at FNAL and J-PARC

Joe Price on behalf of the g-2 and J-PARC collaboration

μ

31st May 2018 CIPANP

Outline

- Introducing the anomaly
- Theoretical predictions
- How to measure the anomaly J-PARC/FNAL
- FNAL data taking so far early look at systematic measurements
- J-PARC time scale

Magnetic moments - QM

1928 - Dirac combined special relativity and quantum mechanics

- g, the proportionality constant, is known as the gyromagnetic ratio
- Predicted by Dirac to be exactly 2 for spin ½ particles
- 1947 Kusch-Foley experiment discovered an anomaly in the electron magnetic dipole moment: g_e = 2.00238(6)
- Within a year Schwinger calculated the 1st order QED correction, for electrons, but applies to muons:

$$g = 2(1 + \frac{\alpha}{2\pi}) \approx 2.00232$$

$$\gamma$$
 Parameterise μ μ $a = \frac{g}{2}$

anomaly

2

Standard model predictions

There are higher order QED corrections, EW and QCD

- All diagrams need to be included in calculation
- So far the best prediction is:

SM uncertainties

31/05/18

SM uncertainty dominated by Hadronic - VP and LBL

HVP LO Davier et al, Eur. Phys. J. C(2011) 71:1515; HVP NLO Hagiwara et al, J. Phys. G38, 085003 (2001); HLbL Prades et al, Lepton Moments HVP combination: https://arxiv.org/pdf/1802.02995.pdf 5

Improvements to SM

- HVP can be tied to experimental data from e⁺e⁻ collisions
 - New data expected from SND, CMD-3, KLOE, BES-III, Belle-II...
 - Continuously updating SM prediction

- Alternative lattice calculations used as cross check
- Hadronic light by light must be calculated by theory lattice
- Agreement with accepted model driven value
- Statistical uncertainty only working on systematic uncertainty
- Factor of 2 improvement in SM calculation expected

HVP combination: Keshavarzi, Nomura, Teubner - <u>https://arxiv.org/pdf/1802.02995.pdf</u> Lattice predictions: T. Blum, *et al.*, *Phys. Rev. Lett.* **116**, 232002 (2016) HLbL: T. Blum, et al., **Phys. Rev. Lett. 118**, **022005** HLbL: See yesterday's precision physics parallel session

Recent HVP improvements

New combination shows improved in LO + NLO HVP measurements

HVP combination: Keshavarzi, Nomura, Teubner - https://arxiv.org/pdf/1802.02995.pdf 7

Sensitivity to new physics

- Anomaly is due to vacuum interactions sensitive to new physics
- Sut it hasn't shown up in a_e , why expect it in a_{μ} ?
- Sensitivity to new physics proportional to squared mass of probe

$$\left(\frac{m_e}{m_{\mu}}\right)^2 \sim 4 \times 10^4$$

- For example EW contributes 1.3 ppm to a_u, but only 26 ppt to a_e
- When using muons:
 - Relatively long lifetime means we can store muons
 - High production cross section
 - Relatively easy to polarise

How to measure the anomaly

- Store longitudinally polarised muons in a dipole field
- Measure 2 quantities:

31/05/18

- ω_a the precession frequency
- , the average magnetic field sampled by the muon distribution

 e⁺ preferentially emitted in direction of the μ⁺ spin

 $\xrightarrow{s_{e^+}}_{p_{e^+}}$

- Asymmetry is larger for higher energy positrons
- Optimal cut at ~E > 1.8 GeV

$$\frac{\delta \omega_a}{\omega_a} = \frac{\sqrt{2}}{2\pi f_a \tau_\mu \sqrt{NA^2}}$$

Precession frequency

Assuming velocity is perpendicular to E and B fields:

$$\vec{\omega_a} = -\frac{e}{mc} \left[a_\mu \vec{B} - \left(a_\mu - \frac{1}{\gamma^2 - 1} \right) \vec{\beta} \times \vec{E} \right]$$

CERN/BNL/FNAL

- Choose γ = 29.3, p_{μ} = 3.09 GeV/c², β x E term is 0, τ_{μ} = 64.4 µs
- Use E-field to vertically focus the beam to improve storage

J-PARC

• E-field is 0, $p_{\mu} = 0.3 \text{ GeV/c}^2$, $\gamma = 3.01$, $\tau_{\mu} = 6.6 \text{ }\mu\text{s}$

FNAL measurement

 $Xc \sim 77$ mm $\beta \sim 10$ mrad 15

Pions

- Storage ring is 14m diameter toroidal C-magnet of 1.45T
- Inflector magnet nullifies the storage ring field for incoming muons
- Muons that pass through the inflector are not on the ideal orbit
- Kicker magnets move the beam into the centre of the storage ring
- Muons focused vertically with electrostatic quadrupoles - improves statistics 31/05/18

Electric Quadrupoles

Injection orbit

Calorimeters

- 24 calorimeters are placed around ring
- Solution They measure the e^+ from the μ decay
- Number of high energy e⁺ oscillates at spin precession frequency

Perform 5 parameter fit to arrival time spectrum same technique as used in BNL experiment

Expected Improvements - ω_a

Category	E821	E989 Improvement Plans	Goal
	[ppb]		[ppb]
Gain changes	120	Better laser calibration	
		low-energy threshold	20
Pileup	80	Low-energy samples recorded	
		calorimeter segmentation	40
Lost muons	90	Better collimation in ring	20
CBO	70	Higher n value (frequency)	
		Better match of beamline to ring	< 30
E and pitch	50	Improved tracker	
		Precise storage ring simulations	30
Total	180	Quadrature sum	70

Gain variation - lasers

- Lasers measure gain variations in all 24 calorimeters
- Both in fill variations and long term trends
- Source monitors ensure laser remains constant
 31/05/18

Beam oscillation (CBO) - detectors

FIBER HARPS

TRACKERS

31/05/18

E-field correction

- E field correction for non magic momentum μ⁺
- Off magic muons occupy different radii
- Radial position of beam measured 2 ways during fill
- Trackers using traceback to radial tangency point
- Calorimeters low radius beam 'laps' high radius

31/05/18

Lost muons

- Muons punch through calorimeters, leaving a small energy deposit
- Robust analysis using double coincidences in calorimeters
- Vary voltage on the focusing quadrupoles to pick out lost muon resonances and avoid them in nominal data taking

Magnetic field - goals

- BNL achieved ~1-2ppm deviation when averaged around azimuth
- FNAL aiming for factor of 2 improvement in homogeneity

			1	
Source of uncertainty	R99	R00	R01	E989
	[ppb]	[ppb]	[ppb]	[ppb]
Absolute calibration of standard probe	50	50	50	35
Calibration of trolley probes	200	150	90	30
Trolley measurements of B_0	100	100	50	30
Interpolation with fixed probes	150	100	70	30
Uncertainty from muon distribution	120	30	30	10
Inflector fringe field uncertainty	200	_	-	-
Time dependent external B fields	_	_	-	5
Others †	150	100	100	30
Total systematic error on ω_p	400	240	170	70
Muon-averaged field [Hz]: $\hat{\omega}_p/2\pi$	61791256	61791595	61791400	-

Magnetic field - monitoring

- Field monitored by fixed NMR probes and NMR trolley
- ~400 probes constantly monitor field just outside storage region (in air)
- Insensitive to field shape drifts inside SR

- Matrix of 17 NMR probes pulled around ring to measure field as felt by muons
- 1 mm position accuracy reads bar codes inside ring

Overall calibration with MRI facility (Argonne) via water probe 31/05/18

Field - Dipole moment

- All stored muons (magic momentum or otherwise) need to see the same field
- Extensive shimming program from 2015-2016 to reduce azimuthal fluctuations around the ring
- 3 times more uniform than BNL

J-PARC

New Muon g-2 Experiment- JPARC

Extracted from talks by K. Ishida (RIKEN) and K. Sasaki (KEK)

JPARC muon storage

Extracted from talks by K. Ishida (RIKEN) and K. Sasaki (KEK)

JPARC e⁺ detection

Extracted from talks by K. Ishida (RIKEN) and K. Sasaki (KER)

JPARC-Timeline

- July 2009 Letter of Intent
- 2012 Conceptual Design
 Report and Stage 1 approval
- May 2015 Technical Design Report
- Nov 2016 TDR review
- 4 years for construction once budget fully approved.
- Two year run ~0.35 ppm measurement (statistical)
- Novel approach significantly reduces several of the largest systematic errors in E821.
- New experiments always bring new surprises ...
- An important effort and complementary to new g-2 FNAL experiment.

ERROR	BNL (ppm)	JPARC (ppm)	ω_a Systematics
Pileup	0.08	<0.05	Tracking rather than calorimeter
Beam background	-	-	Only stored muons
Lost muons	0.09	<<0.09	Requires low emittance beam
Timing shifts	-	<<0.1	No PMTs
E-field, pitch	0.05	<<0.01	No E field, small divergence
Fitting/binning	-	<<0.1	Fewer oscillations cycles
СВО	0.07	<<0.1	Small focusing fields
Track Reconstruction	-	<<0.1	Need to maintain rate independence
Gain changes	0.12	<<0.1	Access with spin flip
Others	-	TBD	Simulation studies started
TOTAL	0.180	<0.1	

$\omega_{\rm p}$ systematic error expected to be similar for JPARC and FNAL \sim 0.07 ppm

Extracted from talks by K. Ishida (RIKEN) and K. Saseki (KEK)

31/05/18

Conclusions

- New data and improved combination reducing major theoretical uncertainties and improving BNL limit
- FNAL g-2 measurement underway
- Detectors working well refining systematic uncertainty analyses
- J-PARC on track to make complimentary measurement

31/05/18

Target

- Outgoing pions focused by a lithium lens and then momentum-selected, centred on 3.11 GeV
- The pions are then collected and sent towards the delivery ring

 2 independent simulations of polarisation and phase space of beam

- JPARC ref:
- http://iopscience.iop.org/article/ 10.1088/1742_6596/295/1/012032/pdf

Calorimeters

- Each consists of 6 by 9 array of crystals
- Each crystal is 2.5 x 2.5 x 14cm ~ (15X_o)

Brookhaven systematics - ω_a

$\sigma_{ m syst} \; \omega_a$	R99	R00	R01
	(ppm)	(ppm)	(ppm)
Pileup	0.13	0.13	0.08
AGS background	0.10	0.01	‡
Lost Muons	0.10	0.10	0.09
Timing Shifts	0.10	0.02	‡
E-field and pitch	0.08	0.03	‡
Fitting/Binning	0.07	0.06	‡
CBO	0.05	0.21	0.07
Gain Changes	0.02	0.13	0.12
Total for ω_a	0.3	0.31	0.21

For R01 the AGS, timing shifts, E field and vertical oscillations and fitting/binning equaled 0.11ppm

Brookhaven systematics - ω_p

TABLE XI: Systematic errors for the magnetic field for the different run periods. [†]Higher multipoles, trolley temperature and its power supply voltage response, and eddy currents from the kicker.

Source of errors	R99	R00	R01
	[ppm]	[ppm]	[ppm]
Absolute calibration of standard probe	0.05	0.05	0.05
Calibration of trolley probes	0.20	0.15	0.09
Trolley measurements of B_0	0.10	0.10	0.05
Interpolation with fixed probes	0.15	0.10	0.07
Uncertainty from muon distribution	0.12	0.03	0.03
Inflector fringe field uncertainty	0.20	_	_
Others †	0.15	0.10	0.10
Total systematic error on ω_p	0.4	0.24	0.17
Muon-averaged field [Hz]: $\widetilde{\omega}_p/2\pi$	61791256	61791595	61 791 400

Additional measurements

As well as measuring the anomalous magnetic moment can additionally search for electric dipole moment $\vec{d_{\mu}} = \frac{\eta}{2} \frac{e\hbar}{2m.d}$

- Precession plane tilts towards centre of ring
- Increase in precession frequency

$$\omega_{tot} = \sqrt{{\omega_a}^2 + {\omega_\eta}^2}$$

Vertical oscillation is
 90° out of phase with a_µ oscillation

Lattice QCD

 higher lattice values missing some components but agree with KNT

Ruth Van De Water (FNAL/HPQCD/MILC), presented at Muon g-2 theory initiative workshop, KEK, Japan, Feb 2018