

The Commissioning Run Update of The Muon g-2 Experiment at Fermilab

Ran Hong (Muon g-2 collaboration) Argonne National Laboratory

Outline

- Introduction
- Experiment Construction and Commissioning Status
- Experiment Progress
- Summary

Argonne National Laboratory

R. Hong, <u>rhong@anl.gov</u>

Introduction: Muon g-2 and BSM Physics

- Issues in modern particle physics:
 - Naturalness of Higgs mass
 - What is the dark matter made of?
 - Baryon asymmetry
 - Unification of fundamental interactions
- The measured muon anomalous magnetic moment disagrees with the SM prediction
- What can the new muon g-2 experiment tell us?
 - Whether the hint of new physics is true?

If true: energy scale/interaction strength of new interactions

If not true: limits of energy or interaction strength of new interactions

Keshavarzi, Nomura, Teubner arXiv: 1902.02995

Introduction: Brief description of the New Measurement

R. Hong, <u>rhong@anl.gov</u>

$$\mathbf{p}) = -\frac{m\omega_a}{eB}$$

CIPANP 2018, Palm Springs, CA

μ

Introduction: Brief description of the New Measurement

ω_a Improvement: 180 ppb -> 70 ppb

ω_p Improvement: 170 ppb -> 70 ppb

Argonne National Laboratory

R. Hong, <u>rhong@anl.gov</u>

22 ppb

Measure muon anomalous precession frequency:

- Asymmetry in positron emission angular distribution
- Positron energy oscillation in lab frame
- Measure oscillation frequency (ω_a) of the counting rate of positrons above an energy threshold

Measure magnetic field:

- Using NMR probes
- Measure proton spin precession frequency ($\omega_{\rm P}$)
- Average the measured field over the muon distribution

Experiment Construction and Commissioning Status

- Muon beam line
- Muon storage ring
- Detectors
- Field sensors

Muon Storage Ring: Magnet

Key:

- Transportation: 2015
- Construction: 2015-2016
- Shimming: 2015-2016

R. Hong, <u>rhong@anl.gov</u>

Muon Storage Ring: Vacuum Chamber

Argonne National Laboratory

R. Hong, <u>rhong@anl.gov</u>

- Installation: 2016-2017

Muon Storage Ring: Inflector

Need to cancel the fringe field before the muons reach the storage region

Commissioning:

Muon Storage Ring: Kicker Magnet

Argonne National Laboratory

R. Hong, <u>rhong@anl.gov</u>

Commissioning:

- Installation: Nov 2016 -June 2017
- Conditioning: Summer 2017
- Optimization: 2018
 - I. Timing optimization
 - 2. Increasing strength

Muon Storage Ring: Electric Quads

Argonne National Laboratory

R. Hong, <u>rhong@anl.gov</u>

Commissioning:

- Alignment: 2016
- Installation: Early 2017
- Conditioning: June 2017

Field Map (Opera3D)

CIPANP 2018, Palm Springs, CA

Detectors: Calorimeters (x24)

Upgrades:

- Pile-up separation: saving digitized waveform and template fitting
- Position sensitivity: read out each crystal
- Gain stability control: Laser calibration system
- Data processing: GPU accelerated pulse finder

Commissioning:

- Fabrication and testing: 2014-2016
- Installation:2016-2017

|3

Detectors: Straw Trackers (x2)

Argonne National Laboratory

R. Hong, <u>rhong@anl.gov</u>

Track reconstruction Calorimeter Ring z [mm]

Beam distribution

Upgrades:

- In vacuum tracking: better beam position retrieval - Minimize scattering: Thin straw walls

- **Commissioning:**
- Fabrication and testing: ~2016
- Installation I.Tracker I: May 2017 2.Tracker 2: Dec 2017

Field Sensors: Field Scanning Trolley

Argonne National Laboratory

R. Hong, <u>rhong@anl.gov</u>

Upgrades:

- Automated mechanical motion control
- New probes and electronics: recording fully digitized waveform

Commissioning:

- Design and construction: 2016
- Installation: March 2017
- Resolving interference: March 2017 - March 2018
- Operation and optimization: More automated motion control

Field Sensors: Fixed-Probe Drift Monitors and fluxgates

leak)

R. Hong, <u>rhong@anl.gov</u>

Upgrades:

- New probes: petroleum jelly (no
- GPU accelerated online analysis: 1.67s per measurement

Commissioning:

- Building probes: 2015
- Constructing electronics: 2016-2017
- Installation: 2016-2017

Field Sensors: Calibration Probes

"Plunging" Probe

- Align with each trolley probe in vacuum - Correct for systematic shifts

Argonne National Laboratory

R. Hong, <u>rhong@anl.gov</u>

³He Probe

Spherical Water Probe

Commissioning:

- Plunging probe assembled and installed: 2018
- Calibration: on-going
- Helium probe and spherical water probe: testing

Experiment Progress

- Review of the progress (2015 ~ 2018)
- Current status
- Upcoming events
- Short-term improvements

2015.11

2016.10 2017.1

Magnet construction

Vacuum chamber installation NMR probe installation

Magnet Shimming Vacuum chamber alignment

Argonne National Laboratory

R. Hong, <u>rhong@anl.gov</u>

2015.11

2016.10 2017.1 2017.5

Magnet construction

Vacuum chamber installation NMR probe installation

Magnet Shimming Vacuum chamber alignment

Detectors/trolley installation DAQ installation

Argonne National Laboratory

R. Hong, <u>rhong@anl.gov</u>

2017.7

Commissioning Run I - First beam - First muon decay - First field scan

2015.11

2017.7 2016.10 2017.1 2017.10 2017.5

Magnet construction

Vacuum chamber installation NMR probe installation

Magnet Shimming Vacuum chamber alignment

Detectors/trolley installation DAQ installation

Argonne National Laboratory

R. Hong, <u>rhong@anl.gov</u>

Commissioning Run I - First beam - First muon decay - First field scan

> Repairing and Upgrading - Trolley motion - Quad and kicker - etc.

CIPANP 2018, Palm Springs, CA

2015.11

2016.10 2017.1 2017.5

Magnet construction

Vacuum chamber installation NMR probe installation

Magnet Shimming Vacuum chamber alignment

Detectors/trolley installation DAQ installation

Argonne National Laboratory

R. Hong, <u>rhong@anl.gov</u>

2017.7

2017.10

2018.3.17

Commissioning Run I - First beam - First muon decay - First field scan

Commissioning Run2 Improving stored muons Improving detectors

Improving field

Repairing and Upgrading - Trolley motion - Quad and kicker - etc.

2015.11

2016.10 2017.1 2017.5

Magnet construction

Vacuum chamber installation NMR probe installation

Magnet Shimming Vacuum chamber alignment

Detectors/trolley installation DAQ installation

Argonne National Laboratory

R. Hong, <u>rhong@anl.gov</u>

2017.7

2017.10

2018.3.17

Commissioning Run I - First beam - First muon decay - First field scan

Production Run 1 - Clock Blinded - Stable runs

Commissioning Run2 Improving stored muons Improving detectors Improving field

Repairing and Upgrading - Trolley motion - Quad and kicker - etc.

Current Status

Experiment Progress

R. Hong, <u>rhong@anl.gov</u>

Beam Performance:

- Quads and kickers experienced several major repairs, but are improved significantly in 2018

Field Performance:

- >30 successful trolley runs (field scans)
- 100% DAQ UP time since 3/17/2018
- Field monitors are ON for all field-up time
- Magnet uptime > 95%

DAQ/Detector Performance:

- DAQ live time ~90%
- Calorimeters and trackers: stable
- Beam Monitors: stable

Current Status

Commissioning Run 1,2017

Positron-count oscillation Plot

R. Hong, <u>rhong@anl.gov</u>

Field Map (6/15/2017)

Current Status

Production Run 1, 2018

Positron-count oscillation Plot

R. Hong, <u>rhong@anl.gov</u>

Field Map (5/16/2018)

End of Run 1: July 7th 2018

Analysis

- Full analysis of Run 1: Summer-2019
- Start of Run 2: October 2018

Argonne National Laboratory

R. Hong, <u>rhong@anl.gov</u>

Short-term Improvements

Kicker

Improve kicker strength, shape and width: more stored muons and less beam oscillation

Inflector

Install new inflector with open ends to improve stored muons by 30%

Quads

Ramp up to higher voltages: improve storage and reduce beam oscillation

Vacuum

Activate cryogenic pumps for better quad performance

Field

- Install thermal insulation to improve field stability
- Calibrations: cross-calibrating plunging probe, spherical probe and the helium probe
- External trigger for fixed-probe readouts: read when muon comes

Short-term Improvements

Kicker

Improve kicker strength, shape and width: more stored muons and less beam oscillation

Inflector

Install new inflector with open ends to improve stored muons by 30%

Quads

Ramp up to higher voltages: improve storage and reduce beam oscillation

Vacuum

Activate cryogenic pumps for better quad performance

Field

- Install thermal insulation to improve field stability
- Calibrations: cross-calibrating plunging probe, spherical probe and the helium probe
- External trigger for fixed-probe readouts: read when muon comes

Close-end inflector Open-end inflector

Short-term Improvements

Kicker

Improve kicker strength, shape and width: more stored muons and less beam oscillation

Inflector

Install new inflector with open ends to improve stored muons by 30%

Quads

Ramp up to higher voltages: improve storage and reduce beam oscillation

Vacuum

Activate cryogenic pumps for better quad performance

Field

- Install thermal insulation to improve field stability
- Calibrations: cross-calibrating plunging probe, spherical probe and the helium probe
- External trigger for fixed-probe readouts: read when muon comes

Close-end inflector Open-end inflector

Field drift differences across the ring

-2.1 ppm

I.2 ppm

CIPANP 2018, Palm Springs, CA

- The Muon g-2 experiment is commissioned!
- Number of decay e+ detected: 1.08 x 10¹⁰
- More improvement in summer 2018
- Run 2 will start in October
- Expect the run 1 result in 2019

Thanks for your attention!