Experimental tests of *ab initio* nuclear structure calculations

- *Ab-initio*: start with 2N, 3N forces (e.g. AV18+IL7, CD Bonn)
- Quantum Monte Carlo limited to A≤12
 - Variational Monte Carlo (lowest energy/configuration by variation)
 - Green's Function Monte Carlo (evolve VMC state in imaginary time)
- No Core Shell Model Harmonic-oscillator basis, converge to large $\hbar\Omega$
- Many Successes
 - Binding and excitation energies
 - Charge and matter radii
 - Spectroscopic overlaps / spectroscopic factors
 - Transition matrix elements
 - Continuum states

E. A. McCutchen *et al.*, PRL **103**, 192501 (2009) (¹⁰Be); PRC 86, 014312 (2012) (¹⁰C); PRC 86, 057306 (2012) (¹⁰B)

 ${}^{10}B(p,p'){}^{10}B^*$ in HELIOS at ANL

45

50

55

60

z (cm)

Kuvin et al., PRC 96, 041301(R) (2017)

65

80

75

70

Correlation between proton energy **B**field and position Target Fan **PSD** Array ¹⁰B beam Ex 0.718 р ${}^{10}B, \alpha, {}^{6}Li$ E(p) (MeV) 9 Zero-Degree 1.740 Recóil Detector 2.154 Detector 3.587 Protons follow helical trajectories in uniform magnetic field.

Pure beam + recoil detection = better isolation of reaction and ability to observe weak transitions

PID and particle branches

The discrepancy remains for GFMC in ¹⁰B

Kuvin et al., PRC **96**, 041301(R) (2017)

Spatial symmetry components combine to make B(E2)

In the continuum: ⁵H

- Very close to ⁴*n* (the "tetra-neutron")
- Very unbound to ³H+2*n* but potentially observable
- Many data exist, with conflicting values of the resonance energy and width (Typically: $E_R \sim 1.8$ MeV, $\Gamma \sim 1-2$ MeV).
- Properties are very sensitive to nn interaction, influence of the continuum: possibility of observing nn correlations
 - Challenge for *ab-initio* methods
 - NCSMC¹; QMC² for limited cases (2-body clusters)
 - Can overlaps be believed for very unbound systems?

¹P. Navrátil, Phys. Scr. **91**, 053002 (2016), S. Quaglioni *et al.*, PRC **97**, 034332 (2018) ²K. Nollett *et al.*, PRL **99**, 022502 (2007), J. Carlson *et al.*, Rev. Mod. Phys. **87**, 1067 (2015)

Reaction products have wide dynamic range in energy: Requires two different types of particle-detector telescope for PID

Bombarding energy is 2.5 times higher than previous measurements

Detection with the High-Resolution Array (HiRA¹) at MSU/NSCL

- 2 Si layers
- 4 CsI(TI) crystals

• ΔE(Si): SSD 32 strips

- E(Si): DSSD 32x32 strips ($\Delta \theta_{lab}$ =0.13°/pixel)
- 14 Telescopes, covers θ_{c.m.}=~1-10°

¹M. S. Wallace et al., Nucl. Instrum. and Meth. A 583, 302 (2007)

GFMC overlaps and two-neutron densities

10

⁶He(2⁺)

f(pair)=96%

Ab Initio with NCSMC

PHYSICAL REVIEW C 97, 034332 (2018)

Three-cluster dynamics within the *ab initio* no-core shell model with continuum: How many-body correlations and α clustering shape ⁶He

Sofia Quaglioni,^{1,*} Carolina Romero-Redondo,^{1,†} Petr Navrátil,^{2,‡} and Guillaume Hupin^{3,§}

No-Core Shell Model and QMC 2-neutron densities are very similar

(This is ${}^{6}\text{He}_{g.s.}$, but the neutron configurations in ${}^{5}\text{H}_{g.s.}$ and ${}^{6}\text{He}_{g.s.}$ should be similar)

Ab initio calculations support strong di-neutron correlations

Ab Initio with NCSMC

PHYSICAL REVIEW C 97, 034332 (2018)

Three-cluster dynamics within the *ab initio* no-core shell model with continuum: How many-body correlations and α clustering shape ⁶He

Sofia Quaglioni,^{1,*} Carolina Romero-Redondo,^{1,†} Petr Navrátil,^{2,‡} and Guillaume Hupin^{3,§}

No-Core Shell Model and QMC 2-neutron densities are very similar

(This is ${}^{6}\text{He}_{g.s.}$, but the neutron configurations in ${}^{5}\text{H}_{g.s.}$ and ${}^{6}\text{He}_{g.s.}$ should be similar)

Ab initio calculations support strong di-neutron correlations

Inspiration for further experiments and calculations

- EM transitions: Re-measure 0.16% E2 gamma-ray branching ratio for ¹⁰B (current limit on uncertainty for measured B(E2)) – Planned experiment using GAMMASPHERE
- Energy and width of ⁵H_{g.s.} (NCSMC calculation; ⁵He is not bad)
- ⁵H (and unbound ⁶He): Compare *n*-*n* correlations following
 ⁶He(*d*, ³He)⁵H and ⁶He breakup
- Other reactions to study continuum states in ⁶He: Two-neutron transfer with ⁴He(*t*,*p*)⁶He (Previously studied only twice in the 70's at low energies)

Many thanks to:

S. A. Kuvin, 1 C. J. Lister, 2 M. L. Avila, 3 C. R. Hoffman, 3 B. P. Kay, 3 D. G. McNeel, 1 C. Morse, 2
E. A. McCutchan, 4 D. Santiago-Gonzalez, 5, 3 and J. R. Winkelbauer
¹Department of Physics, University of Connecticut, Storrs, Connecticut 06269, USA
²Department of Physics and Applied Physics, University of Massachusetts, Lowell, Massachusetts 01854, USA
³Physics Division, Argonne National Laboratory, Argonne, Illinois 60439, USA
⁴National Nuclear Data Center, Brookhaven National Laboratory, Upton, New York 11973, USA
⁵Department of Physics and Astronomy, Louisiana State University, Baton Rouge, Louisiana 70803, USA
⁶Physics Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA

S. Bedoor,_{1,2,7} K. W. Brown,_{3,7} W. W. Buhro,₄ Z. Chajecki,₄ R. J. Charity,₃ W. G. Lynch,₄ J. Manfredi,₄ S. T. Marley,_{5,§} D. G. McNeel,_{1,2} A. S. Newton,₂ D. V. Shetty,₆ R. H. Showalter,₄ L. G. Sobotka,₃ M. B. Tsang,₄ J. R. Winkelbauer,_{4,||} and R. B. Wiringa⁷

¹Department of Physics, University of Connecticut, Storrs, Connecticut 06268-3046, USA
 ²Department of Physics, Western Michigan University, Kalamazoo, Michigan 49008-5252, USA
 ³Departments of Chemistry and Physics, Washington University at St. Louis, St. Louis, Missouri 63130, USA
 ⁴National Superconducting Cyclotron Laboratory and Department of Physics and Astronomy, Michigan State University, East Lansing, Michigan 48824, USA
 ⁵Department of Physics and Astronomy, University of Notre Dame, South Bend, Indiana 46558, USA
 ⁶Department of Physics, Grand Valley State University, Allendale, Michigan 49401, USA
 ⁷Physics Division, Argonne National Laboratory, Argonne, Illinois 60439, USA

U. S. Department of Energy, Office of Science, Office of Nuclear Physics, under Award Numbers DE-FG02- 04ER41320, DE-SC0014552, DE-FG02-87ER40316, and DE-AC02-06CH11357, and: The U. S. National Science Foundation under Grant Numbers and PHY-1068192 and PHY-1102511

⁵H:

10**B**.

Experimental Signatures

σ(E) Q-value dependence

- Cross section decreases with excitation energy, distorting the line-shape (energy conservation and momentum matching)
- Observed profile is narrower and may shift compared to "intrinsic" shape
- Must correct before going any further using reaction theory (DWBA)

Ab Initio comparisons PHYSICAL REVIEW C 97, 034332 (2018)

Three-cluster dynamics within the *ab initio* no-core shell model with continuum: How many-body correlations and α clustering shape ⁶He

Sofia Quaglioni,^{1,*} Carolina Romero-Redondo,^{1,†} Petr Navrátil,^{2,‡} and Guillaume Hupin^{3,§}

No-Core Shell Model and QMC 2-neutron densities are very similar

(This is ⁶He, but the neutron configurations in ⁵H and ⁶He should be similar)

Ab initio calculations support strong di-neutron correlations

A very different theory

Present empirical "intrinsic" shape

Broad states beyond the neutron drip line

Examples of $^5\mathrm{H}$ and $^4\mathrm{n}$

L.V. Grigorenko^{1,2,a}. N.K. Timofevuk³. and M.V. Zhukov⁴ Eur. Phys. J. A **19**, 187–201 (2004)

Properties depend on formation mechanism, *e.g.* proton removal from ${}^{6}\text{He}(0^{+})$.

The nucleus does *not* forget: "Model with source"

Reaction of interest: ${}^{6}\text{He}(d,{}^{3}\text{He}){}^{5}\text{H}({}^{3}\text{H}+2n)$ Q=-(18-20) MeV undetected =proton Si-CsI(TI) =neutron ²H 1.9mg/cm² ⁵H (CD₂)_n undetected ³H ~ 190 MeV ⁶He 330MeV 3 He ~ 10 MeV 7x10⁵/sec from Si-Si NSCL

Reaction products have wide dynamic range in energy: Requires two different types of particle-detector telescope for PID

Bombarding energy is 2.5 times higher than previous measurements

Calibration reaction: ${}^{6}\text{He}(d,t){}^{5}\text{He}({}^{4}\text{He}+n)$

Reaction products have wide dynamic range in energy: Requires two different types of particle-detector telescope for PID Properties of ⁵He_{g.s.} are well known.

⁵H as a resonance: Data and Theory

With apologies – too many references to cite

Reaction of interest: ${}^{10}B(p,p'){}^{10}B(\gamma)$

Protons detected in HELIOS; other reaction products identified in Si-Si telescopes

Reaction of interest: ${}^{10}B(p,p'){}^{10}B(\alpha+{}^{6}Li)$

Protons detected in HELIOS; other reaction products identified in Si-Si telescopes

Where there are challenges

- T_Z dependence of EM transition matrix elements; Focus on $2^+ \rightarrow 0^+$ transitions in the T=1, A=10 triplet
 - What works, and what doesn't?
 - What aspects are most important? (3BF and different symmetry components)
 - ¹⁰B
- The continuum (unbound systems, scattering states)
 - What can we learn about or from (very) unbound systems?
 - What are the limitations and (how) can they be surpassed?
 - How can we learn more?
 - ⁶He/⁵H

