Progress in the Nucleon EDM Calculations in Lattice QCD

Sergey N. Syritsyn, Stony Brook University & RIKEN / BNL Research Center together with LHP and RBC collaborations

13th Conference on the Intersections of Particle and Nuclear Physics Palm Springs, CA, May 29–Jun 3, 2018

RIKEN BNL Research Center

Outline

θ_{QCD} -induced nucleon EDM:

- Previous calculations
- New challenges
- Improved techniques on a lattice
- Outlook for θ_{QCD} -nEDM
- Quark chromo-EDM-induced nucleon EDM
 - Preliminary results at the physical point

CP Violation: Electric Dipole Moments

EDMs are the most sensitive probes of CPv:

- Prerequisite for Baryogenesis
- Evidence for SM Extensions
- (θ_{QCD} in particular) Strong CP problem

$$\vec{d}_N = d_N \frac{S}{S} \qquad \mathcal{H} = -\vec{d}_N \cdot \vec{E}$$

OR $\mathcal{L}_{int} = eA_{\mu}^{em} \mathcal{V}^{\mu} \qquad (P,T\text{-even})$
 $+ eA_{\mu}^{em} \mathcal{A}^{\mu} \qquad (P,T\text{-odd})$

Experimental Outlook: Neutron EDM

	10 ⁻²⁸ e cm	[B.Filippone's talk, KITP 2016]		
CURRENT LIMIT	<300	$\widehat{\mathbf{E}}$ 10 ⁻¹⁷ \mathbf{T} $\widehat{\mathbf{C}}$ $\widehat{\mathbf{S}}$		
Spallation Source @ORNL	< 5	• P-viol		
Ultracold Neutrons @LANL	~30	A diama di		
PSI EDM	<50 (I), <5 (II)	uout ev		
ILL PNPI	<10	10^{-23} M > 200 m _{proton}		
Munich FRMII	< 5	10 ⁻²⁵		
RCMP TRIUMF	<50 (I), <5 (II)	10^{-27} Sensitivity of next		
JPARC	< 5	$ \begin{array}{c} generation experiment \longrightarrow \bullet \\ 10^{-29} \end{array} \\ M > 50,000 \text{ m}_{\text{proto}} \end{array} $		
Standard Model (CKM)	< 0.001	1950 1960 1970 1980 1990 2000 2010 2020		

nEDM sensitivity :

- 1–2 years : next best limit
- 3–4 years : x10 improvement
- 7-10 years : x100 improvement

Nucleon EDMs: a Window into New Physics

Effective quark-gluon CPv interactions organized by dimension

$$\mathcal{L}_{eff} = \sum_{i} \frac{C_i}{[\Lambda_{(i)}]^{d_i - 4}} \mathcal{O}_i^{[d_i]}$$
$$d=4: \theta_{QCD}$$

[J.Engel, M. Ramsey-Musolf, U. van Kolck, Prog.Part.Nucl.Phys. 71 (2013), pp. 21-74]

d=5(6): quark EDM, quark-gluon chromo EDM d=6: 4-fermion CPv, 3-gluon (Weinberg)

$$\begin{matrix} d_{n,p} \\ F_3^{n,p}(Q^2) \end{matrix}$$

 $c_i \iff d_{n,p}$?

•
$$d_{n,p} = d_{n,p}^{\theta} \theta_{\text{QCD}} + d_{n,p}^{cEDM} c_{cEDM} + \dots$$

lattice QCD calculations are needed to relate to constrain θ_{QCD} , C_{cEDM} , ...

Sergey N. Syritsyn

CP-odd Nucleon Structure on a Lattice

CP-broken vacuum on a lattice: • Linear response to CP-odd interaction (e.g., QCD θ -term) 0.12 $\langle \mathcal{O} \dots \rangle_{\mathcal{CP}} = \langle \mathcal{O} \dots \rangle_{CP-even} - i\theta \langle Q \cdot \mathcal{O} \dots \rangle_{CP-even} + O(\theta^2)$ 0.1 [S. Aoki et al (2005); F. Berruto et al (2005); A.Shindler et al (2015); 0.08 C. Alexandrou et al (2015); E. Shintani et al (2016)] ය රු 0.06 0.04 • Simulation with dynamical (imaginary) θ_{QCD} $\langle \mathcal{O} \dots \rangle_{\theta} \sim \int \mathcal{D} U e^{-S - \theta^{I} Q} \left(\mathcal{O} \dots \right)$ 0.02 0 -30[R.Horsley et al (2008); F.K.Guo et al (2015)] new gauge ensembles \Rightarrow better sampling of Q \neq 0 sectors

Extraction of *d*_N

Nucleon spectrum in the bg. electric field [S.Aoki et al '89 ; E.Shintani et al '06; E.Shintani et al, PRD75, 034507(2007)] (N(t)N̄(0))_{θ,E} ~ e^{-(E±d̄_N·Ē)t}
P,T-odd Form Factor d_N=F₃(0)/2m_N

[E.Shintani et al '05, '15 ; F.Berruto et al '05 ; A.Shindler et al '15 ; C.Alexandrou et al'15] Require extrapolation $F_3(Q^2 \rightarrow 0)$

θ_{QCD} -induced Nucleon EDM

[E.Shintani, T.Blum, T.Izubuchi, A.Soni, PRD93, 094503(2015)]

- Phenomenology: $|d_n| \simeq \theta_{QCD} \times (0.4 .. 2.5) \cdot 10^{-3} e \text{ fm}$
- Lattice [Guo et al 2015] : $|d_n| \simeq \theta_{QCD} \times (4 \cdot 10^{-3} e \text{ fm})$
 - \mapsto tighter constraint on θ_{QCD} ?

Unfortunately, there was a problem ...

Nucleon "Parity Mixing"

CPv interaction induces a chiral phase in fermion fields:

Vector current M.E. has to be defined with positive-parity spinors to define $F_{2,3}$ [SNS, S.Aoki, *et al* (2017) arXiv:1701.07792]

$$\langle N_{p'} | \bar{q} \gamma^{\mu} q | N_{p} \rangle_{\mathcal{CP}} = \bar{u}_{p'} \Big[F_{1} \gamma^{\mu} + (F_{2} + i F_{3} \gamma_{5}) \frac{i \sigma^{\mu\nu} (p' - p)_{\nu}}{2m_{N}} \Big] u_{p} \qquad \qquad \gamma_{4} u = +u \\ \bar{u} \gamma_{4} = +\bar{u} \\ \Gamma_{\mathcal{E}}^{\mu} \Big]$$

... otherwise, $F_{2,3}$ mix under chiral rotation and lead to fake EDM/EDFF signal

The same issue is addressed correctly in EFT (ChPT) calculations

Nucleon "Parity Mixing" (2)

With proper definition of $F_{2,3}$ [SNS, S.Aoki, *et al* (2017) arXiv:1701.07792]

coupling of E,B to spin in the forward limit $\langle H_{\rm int} \rangle = eA_{\mu} \langle J^{\mu} \rangle = -\frac{eG_M(0)}{2m_N} \vec{\Sigma} \cdot \vec{H} - \frac{eF_3(0)}{2m_N} \vec{\Sigma} \cdot \vec{E}$

Numerical test: compare EDFF with mass shift in uniform bg. electric field

Sergey N. Syritsyn

Recent Lattice Results on θ_{QCD} -induced nEDM

Correction to previous results:

 $[F_3]_{\text{true}} = "F_3" + 2\alpha F_2$

• [F. Guo *et al* (QCDSF), PRL115:062001 (2015)] dynamical calculations with finite imag. θ^{l} angle

 [C.Alexandrou *et al* (ETMC), PRD93:074503 (2016] d_n =−0.045(06) *e* fm (~7.5σ) → +0.008(6) *e* fm (1.3σ)

Our of the sector of the se

[ETMC 2016] [Shintani et al 2005] [Berruto et al 2006] [Guo et al 2015]

		$m_{\pi} [{ m MeV}]$	$m_N [{ m GeV}]$	F_2	α	$ ilde{F}_3$	F_3	
6]	n	373	1.216(4)	$-1.50(16)^{a}$	-0.217(18)	-0.555(74)	0.094(74)	
ſ	n	530	1.334(8)	-0.560(40)	$-0.247(17)^{b}$	-0.325(68)	-0.048(68)	
5] {	p	530	1.334(8)	0.399(37)	$-0.247(17)^{b}$	0.284(81)	0.087(81)	
n ∫	n	690	1.575(9)	-1.715(46)	-0.070(20)	-1.39(1.52)	-1.15(1.52)	
ן ני	n	605	1.470(9)	-1.698(68)	-0.160(20)	0.60(2.98)	1.14(2.98)	
51∫	n	465	1.246(7)	$ -1.491(22)^{c} $	$-0.079(27)^d$	-0.375(48)	$-0.130(76)^d$	
ر ر	n	360	1.138(13)	$ -1.473(37)^{c}$	$-0.092(14)^d$	-0.248(29)	$0.020(58)^d$	

After removing spurious contributions,

• no lattice signal for θ_{QCD} -induced nEDM \Rightarrow d_N is very small

• *no conflict with phenomenology values or m_q scaling*

θ-Term Noise Reduction for EDM

Lattice signal for θ -nEDM $d_N \sim \langle Q \cdot (N(x)J_\mu \bar{N}(0)) \rangle_{CP-even}$ Top. charge Q is global $Q \sim \int_{V_4} (G\tilde{G})$ with $\langle |Q|^2 \rangle \sim V_4$ \Rightarrow Variance of correlator $\sim V_4$

Constrain Q integral to the relevant volume

onstrain Q in time,
$$|t_Q - t_J| \leq \Delta t$$

[E.Shintani, T.Blum, T.Izubuchi, A.Soni, PRD93, 094503(2015)]

Cluster decomposition" [K.-F.Liu et al, 1705.06358]:

constrain Q in 4-d around "sink" within |r|<R

Proper account of nucleon parity mixing is critical for correct determination of F₃ \implies nucleon states must "settle" in the new vacuum $N^{(+)} \rightarrow \tilde{N}^{(+)} \approx N^{(+)} + i\alpha N^{(-)}$ $N^{(-)} \rightarrow \tilde{N}^{(-)} \approx N^{(-)} - i\alpha N^{(+)}$

 \implies treat time differently from space: 4d "cylinder" V_Q : $|\vec{z}| < r_Q$, $-\Delta t_Q < z_0 < T + \Delta t_Q$

Noise Reduction: θ-induced Parity-mixing

PRELIMINARY 48c96 mpi=140MeV

Parity-mixing angle from constrained Q sum

Reassuring results for noise reduction at the physical point

- required time region is small,
- spatial region must be large,

 $\begin{array}{l} \Delta t_Q \gtrsim 8a \approx 1.2 \, \mathrm{fm} \\ r_Q \gtrsim 20a \approx 2.3 \, \mathrm{fm} \end{array}$

θ-nEDM Feasible at the Physical Point?

Preliminary Results with $m\pi$ =330 MeV

• Q sampled with $\Delta t_Q = 4a$, $r_Q = \infty$

Best guess for neutron EDM d_n : extrapolation in m_q~(m π)²

 \odot chiral fermions, m π =330 MeV

⇒ phys.point $|F_3(0)| \approx 0.020$, $|dn| \approx 0.002 e fm$

- Wilson fermions, $m\pi$ =360 MeV [Guo et al 2015]
 - \implies phys.point $|F_3(0)| \le 0.012$, $|dn| \le 0.001 e$ fm

$$|F_{3n}^{\text{phys}}(0)| \sim O(10^{-2}) \,\theta, \quad |d_n| \sim O(10^{-3}) \,e\,\text{fm}\,\theta$$

Noise Reduction: θ-induced EDFF F3

PRELIMINARY 48c96 mpi=140MeV

● EDFF F₃ from constrained Q sum: *the most aggressive* Q cuts

- ③ 33k lattice samples, ~ 30 M core-hours on Argonne BlueGene/Q
- connected diagrams only
- result compatible with zero, $|F_{3n}| \le 0.05$

Need to constrain $|F_{3n}| \approx 0.01..0.02$: θ -nEDM remains difficult at the physical point...

Sergey N. Syritsyn

Outlook for θ-nEDM

Resort to simpler calculations

- heavier pion masses + EFT for extrapolations
- quenched calculations (see e.g. recent [J.Dragos et al,1711.04730])

Physical point calculations of θ -nEDM will be necessary to renormalize effects from other CPv sources of higher-dim. [T.Bhattacharya et at (2015)]

New lattice simulations at the physical point with dynamical θ^{I} -term

- coarse (a=0.2 fm) physical-point lattice \implies reduced cost due to lattice volume
- chiral lattice fermions allow independent $a \rightarrow 0$, $m_q \rightarrow 0$ limits
- enhance d_N signal with $\langle Q \rangle \neq 0$ more critical at light quark masses

 \Rightarrow 2018 ALCC award for 50 M BG/Q core-hours

Ensembles with dynamical θ^{I} -term will be also useful for CPv πN coupling

Another Source of CPv: Quark Chromo-EDM

$$\mathcal{L}_{\text{cEDM}} = \sum_{q=u,d} \frac{\tilde{\delta}_q}{2} \,\bar{q} \left[G_{\mu\nu} \sigma^{\mu\nu} \gamma_5 \right] q$$

O(a⁻²) mixing with dim-3 pseudoscalar density ⇒ need non-perturbative subtractions

Non-chiral (e.g.Wilson) fermions have a O(a) clover term ("chromo-magnetic DM") $\mathcal{L}^{\text{clover}} = a \frac{c}{4} \bar{q} \left[G_{\mu\nu} \sigma^{\mu\nu} \right] q$

Condensate realignment in presense of CPv $q \rightarrow e^{i\gamma_5\Omega}q$ assuring $\langle \operatorname{vac} | \mathcal{L}_m + \mathcal{L}_{CP} | \pi^a \rangle = 0$

mixes (chromo)EDM and (chromo)MDM: $\delta \mathcal{L}_{cEDM} = \delta(\bar{q} [\tilde{D}_q G_{\mu\nu} \sigma^{\mu\nu} \gamma_5] q) = \bar{q} [\{\Omega, \tilde{D}_q\} G_{\mu\nu} \sigma^{\mu\nu}] q) \sim \delta \mathcal{L}_{cMDM}$

⇒ Chirally-symmetric actions avoid these cMDM contributions

Quark-Gluon EDM: Insertions of dim-5 Operators

$$\mathcal{L}^{(5)} = \sum_{q} \tilde{d}_{q} \,\bar{q}(G \cdot \sigma) \gamma_{5} q \qquad \longleftarrow \qquad \langle N(y) \,\bar{N}(0) \int d^{4}x \,\bar{q}(G \cdot \sigma) \gamma_{5} q \rangle \\ \langle N(y) \,[\bar{\psi}\gamma^{\mu}\psi]_{z} \,\bar{N}(0) \int d^{4}x \,\bar{q}(G \cdot \sigma) \gamma_{5} q \rangle$$

First calculations : [T.Bhattacharya et al(LANL, LATTICE'15,'16)]

This work: Only quark-connected insertions

In future: Single- and double-disconnected diagrams (contribute to isosinglet cEDM, mix with θ-term)

Sergey N. Syritsyn

Nucleon EDMs on a Lattice

Nucleon Sachs Form Factors

Sergey N. Syritsyn

Nucleon EDMs on a Lattice

CIPANP 2018, Palm Springs, CA

Parity Mixing (Proton)

$$N_{\delta} = \epsilon^{abc} \, u^a_{\delta} \left(u^{aT} \mathcal{C} \gamma_5 d^c \right)$$

$$\langle N(t)\bar{N}(0)\rangle_{\mathcal{CP}} = \frac{-i\not\!\!\!/ + m_N e^{2i\alpha_5\gamma_5}}{2m_N}e^{-E_Nt}$$

$$\hat{\alpha}_5 = \frac{\alpha_5}{\tilde{d}} = -\frac{\operatorname{ReTr}\left[T^+ \gamma_5 \cdot C_{2pt}^{\overline{CP}}(t)\right]}{\operatorname{ReTr}\left[T^+ \cdot C_{2pt}^{CP}(t)\right]}, \quad t \to \infty$$

(flavors labeled for the proton)

similarity effect on nucleon likely due to mixing between cEDM and PS

Proton & Neutron EDFF Form Factors (bare)

- (5.5 fm)³x(11 fm) box
- mπ=140 MeV
- connected-only
- no renormalization

Sergey N. Syritsyn

Nucleon EDM : Summary

Previously reported lattice results for θ_{QCD} -induced nEDM contain spurious contributions from mixing with the anomalous mag.moment

Corrected θ_{QCD}-nEDM lattice values are small, consistent with zero Disagreement with phenomenology/EFT is eliminated Much higher lattice statistics are required to constrain of θ_{QCD}

Based on preliminary analysis at a heavier pion mass (330 MeV), at the physical point expect |d_n|≈(1..2)×10⁻³ e fm Even with variance-reduction techniques, O(300) M core*hours may be required

Promising results for quark cEDM-induced EDFF Renormalization & mixing subtractions are underway