Progress in the Nucleon EDM Calculations in Lattice QCD

Sergey N. Syritsyn, *Stony Brook University & RIKEN / BNL Research Center together with LHP and RBC collaborations*

RBRC

13th Conference on the Intersections of Particle and Nuclear Physics Palm Springs, CA, May 29–Jun 3, 2018

RIKEN BNL Research Center

Outline

- *• Previous calculations*
- *• New challenges*
- *• Improved techniques on a lattice*
- *• Outlook for θQCD-nEDM*
- Quark chromo-EDM-induced nucleon EDM
	- *• Preliminary results at the physical point*

CP Violation: Electric Dipole Moments

EDMs are the most sensitive probes of CPv:

- **Prerequisite for Baryogenesis**
- **Evidence for SM Extensions**
- **(θ**_{QCD} in particular) Strong CP problem

$$
\vec{d}_N = d_N \frac{\vec{S}}{S} \qquad \mathcal{H} = -\vec{d}_N \cdot \vec{E}
$$

OR $\mathcal{L}_{int} = e A_\mu^{\text{em}} \mathcal{V}^\mu$ (P, T-even)
 $+ e A_\mu^{\text{em}} \mathcal{A}^\mu$ (P, T-odd)

Experimental Outlook: Neutron EDM

nEDM sensitivity :

- 1–2 years : next best limit
- **3–4 years : x10 improvement**
- 7-10 years : x100 improvement

Nucleon EDMs: a Window into New Physics

Effective quark-gluon CPv interactions organized by dimension

$$
\mathcal{L}_{eff} = \sum_{i} \frac{c_i}{[\Lambda_{(i)}]^{d_i - 4}} \mathcal{O}_i^{[d_i]}
$$
 [J.Engel, M. Ramsey-Musolf, U. van Kolck
Prog.Part.Nucl.Phys. 71 (2013), pp. 21-74]

$$
d = 4 : \theta_{QCD}
$$

d=5(6) : quark EDM, quark-gluon chromo EDM *d=6* : 4-fermion CPv, 3-gluon (Weinberg)

$$
\begin{pmatrix}d_{n,p}\\F_3^{n,p}(Q^2)\end{pmatrix}
$$

 $c_i \iff d_{n,p}$?

[J.Engel, M. Ramsey-Musolf, U. van Kolck,

$$
\bullet \quad d_{n,p} = d_{n,p}^{\theta} \theta_{\text{QCD}} + d_{n,p}^{cEDM} c_{cEDM} + \dots
$$

lattice QCD calculations are needed to relate to constrain $θ$ _{QCD,} C_{CEDM,} ...

Sergey N. Syritsyn

CP-odd Nucleon Structure on a Lattice

CP-broken vacuum on a lattice: Linear response to CP-odd interaction (e.g., QCD θ-term) 0.12 $\langle O \dots \rangle_{\mathcal{CP}} = \langle O \dots \rangle_{CP-even} - i\theta \langle Q \cdot O \dots \rangle_{CP-even} + O(\theta^2)$ $\langle b \cdot \cdot \cdot \rangle_{CP-even}$ ± 0.2 0.1 (E) . A Chindler of al $(201E)$ $\theta^I=0$ [S. Aoki et al (2005); F. Berruto et al (2005); A.Shindler et al (2015) ; μ , Λ . Onlinuit i 0.08 C. Alexandrou et al (2015) ; E. Shintani et al (2016)] α 0.06 *(w/o*θ*=0) Neutron, R3* θ section factor in θ 0.04 Simulation with dynamical (imaginary) $θ'$ _{QCD} Z γ vacuum. 0.02 $\mathcal{D}U e^{-S-\theta^I Q} (\mathcal{O} \dots)$ $\langle \mathcal{O} \dots \rangle_{\theta} \sim$ Ω -20 -10 -30 Ω 10 [R.Horsley et al (2008) ; F.K.Guo et al (2015)] Q new gauge ensembles \Rightarrow better sampling of Q≠0 sectors 0.998 0 5 10 10 11 12 13 14 15 16 17 17 18 19 19 10 11 11 12 13 14 15 16 17 17 18 17 18 17 18 17 18 17 18 17 18 17

Imaginary q

Extraction of d_N

• Nucleon spectrum in the bg. electric field [S.Aoki et al '89 ; E.Shintani et al '06; E.Shintani et al, PRD75, 034507(2007)] $\langle N(t) \bar{N}(0) \rangle_{\theta, \vec{E}} \sim e^{-(E \pm \vec{d}_N \cdot \vec{E})t}$ \bullet P,T-odd Form Factor $d_N = F_3(0)/2m_N$

[E.Shintani et al '05, '15 ; F.Berruto et al '05 ; A.Shindler et al '15 ; C.Alexandrou et al'15] Require extrapolation *F3(Q2→0)*

20

Sergey N. Syritsyn

*(w/o*θ*=0)*

θ_{QCD}-induced Nucleon EDM

 F1G , F1G and F1G is an proton for F1G for F2G for F1G [E.Shintani, T.Blum, T.Izubuchi, A.Soni, PRD93, 094503(2015)]

- $d \approx 0$ Denote $(0, 1, 2, 5)$, 10-3 of the current systematic errors, as formation $\frac{d}{dt}$ Phenomenology: $|d_n|$ ≈ θ_{QCD} × (0.4 .. 2.5)⋅10⁻³ *e* fm
- θ (15) $|d_0| \approx \theta$ con \times (4.10⁻³ e fm) Lattice [Guo et al 2015] : |*d*_n| ≃ *θ*_{QCD} × (4⋅10⁻³ *e* fm)
	- \implies tighter constraint on *θQCD* ?

result in \mathcal{A} + 1 + 1 \mathcal{A} which is including systematic error. The cross systematic error. The cros t , and have of values from model calculations of t *Unfortunately, there was a problem...*

Nucleon "Parity Mixing"

CPv interaction induces a chiral phase in fermion fields:

$$
\langle \text{vac} | N | p, \sigma \rangle_{\mathcal{CP}} = e^{i\alpha\gamma_5} u_{p,\sigma} = \tilde{u}_{p,\sigma}
$$
\n
$$
u [u^T C \gamma_5 d]
$$
\n
$$
\langle \phi + m_N e^{-2i\alpha\gamma_5} \rangle \tilde{u}_p = 0
$$
\n
$$
\sum_{\sigma} \tilde{u}_{p,\sigma} \bar{u}_{p,\sigma} \sim (-i \psi_{\mathcal{E}} + m_N e^{2i\alpha\gamma_5})
$$

Vector current M.E. has to be defined with positive-parity spinors to define *F2,3* [SNS, S.Aoki, *et al* (2017) arXiv:1701.07792]

$$
\langle N_{p'}|\bar{q}\gamma^{\mu}q|N_{p}\rangle_{\mathcal{G}\mathcal{P}} = \bar{u}_{p'}\Big[F_{1}\gamma^{\mu} + (F_{2} + iF_{3}\gamma_{5})\frac{i\sigma^{\mu\nu}(p'-p)_{\nu}}{2m_{N}}\Big]u_{p} \qquad \begin{array}{c} \gamma_{4}u = +u\\ \bar{u}\gamma_{4} = +\bar{u} \end{array}
$$

... otherwise, *F2,3* mix under chiral rotation and lead to fake EDM/EDFF signal

$$
e^{i\alpha\gamma_5}\Gamma^{\mu}e^{i\alpha\gamma_5} \leftrightarrow \Gamma^{\mu}
$$

\n
$$
e^{2i\alpha}(\text{``}F_2\text{''} + i\text{``}F_3\text{''}) = (F_2 + iF_3)_{\text{true}}
$$

\n
$$
{}^{\text{``}}F_3\text{''} \approx [d_{n,p}]_{\text{true}} - 2\alpha \frac{\kappa_{n,p}}{2m_N}
$$

The same issue is addressed correctly in EFT (ChPT) calculations

Nucleon "Parity Mixing" (2)

With proper definition of *F*2,3 [SNS, S.Aoki, *et al* (2017) arXiv:1701.07792]

$$
\begin{aligned} \text{coupling of E,B to spin in the forward limit} \\ \langle H_{\text{int}} \rangle &= e A_{\mu} \langle J^{\mu} \rangle = -\frac{e G_M(0)}{2 m_N} \vec{\Sigma} \cdot \vec{H} - \frac{e F_3(0)}{2 m_N} \vec{\Sigma} \cdot \vec{E} \end{aligned}
$$

 $\mathcal{L}_N = \bar{N} \big[i \partial \hspace{-0.25em} / - m e^{-2 i \alpha \gamma_5} - Q \gamma_\mu A^\mu - (\tilde{\kappa} + i \tilde{\zeta} \gamma_5)$ 1 2 $F_{\mu\nu}$ $\sigma^{\mu\nu}$ $2m_N$ $\overline{\left| N \right.}$ $E_N(\vec{p}=0) - m_N = -\frac{\kappa}{2m}$ $2m_N$ $\vec{\Sigma} \cdot \vec{H} - \frac{\zeta}{2m}$ $2m_N$ $\vec{\Sigma} \cdot \vec{E} + O(\kappa^2, \zeta^2)$ with $\kappa + i\zeta = e^{2i\alpha\gamma_5}(\tilde\kappa + i\tilde\zeta)$ poles of the Dirac operator in bg. electric & magnetic fields 0 \overline{a} $\tilde{\kappa}$ + *E/E*⁰ = *±*2

Numerical test: compare EDFF with mass shift in uniform bg. electric field n mass

Sergey N. Syritsyn

Recent Lattice Results on θ_{QCD}-induced nEDM

Correction to previous results:

 $[F_3]_{\text{true}} = "F_3" + 2\alpha F_2$

 [F. Guo *et al* (QCDSF), PRL115:062001 (2015)] dynamical calculations with finite imag. *θ^I* angle

 [C.Alexandrou *et al* (ETMC), PRD93:074503 (2016] $d_{\sf n}$ =–0.045(06) *e* fm (~7.5 σ) → +0.008(6) *e* fm (1.3 σ)

Uniform bg.electric field method is not affected by "parity mixing" *Precision in Ref. [E.Shintani et al, D78:014503 (2008)] is insufficient for comparison* extractive sylonomic increases included the correction of Fig. 16). In the fig. 16, the fig. 16, the fig. 16, the
The fig. 16, the fig. 16, the fig. 16, the fig. 2014 the original follows the correction for the original f ²recision in Ref. [E.Shintahi et al, D78:014503 (2008)] is insufficient for comparison have been corrected with *F*³ = *F*˜³ + 2↵*F*² using the assumptions discussed in the text.

 $[ETMC 20]$ [Shintani et al 20 [Berruto et al 200 **IGuo et al 20**

After removing spurious contributions, *b*The *f* choose *f* was compared in Ref. *f* choose *factor* α *spanned* compared in Ref. *factor* of 1 $\overline{1}$

no lattice signal for θ_{QCD}-induced nEDM \Rightarrow *d_N is very small* **actual computed with ∂** and *Fattice signal*

no conflict with phenomenology values or mq scaling α and *F no* conflict with phonomone

θ**-Term Noise Reduction for EDM**

Top. charge Q is global $Q \sim \int_{\mathcal{V}}{(G\tilde{G})}$ with $\langle |Q|^2 \rangle \sim V_4$ Lattice signal for θ -nEDM $d_N \sim \langle Q \cdot \left(N(x) J_\mu \bar{N}(0) \right) \rangle_{CP-even}$ Z *V*⁴ $(G\tilde{G})$ with \Rightarrow Variance of correlator $\sim V_4$

Constrain Q integral to the relevant volume

constrain Q in time, $|t_{Q}-t_{J}|\leq \Delta t$

[E.Shintani, T.Blum, T.Izubuchi, A.Soni, PRD93, 094503(2015)]

O "cluster decomposition" [K.-F.Liu et al, 1705.06358]:

constrain Q in 4-d around "sink" within |r|<R

Proper account of nucleon parity mixing is critical for correct determination of F3 ⟹ *nucleon states must "settle" in the new vacuum* $N^{(+)} \to \tilde{N}^{(+)} \approx N^{(+)} + i\alpha N^{(-)}$ (*V*_Q) $N^{(-)} \rightarrow \tilde{N}^{(-)} \approx N^{(-)} - i \alpha N^{(+)}$

⟹ *treat time differently from space:* 4d "cylinder" $V_Q:~|\vec{z}| < r_Q,~~-\Delta t_Q < z_0 < T+\Delta t_Q$

EXECUSE CIPANP 2018, Palm Springs, CA entertainment and mixing angle from local time slice reweighting angle from local time slice reweighting angle from local time slice reweighting angle from local time slice reweighti

Noise Reduction: θ**-induced Parity-mixing**

PRELIMINARY 48c96 mpi=140MeV

Parity-mixing angle from constrained Q sum

Reassuring results for noise reduction at the physical point

- \bullet required time region is small,
- \bigcirc spatial region must be large,

 $\Delta t_Q \gtrsim 8a \approx 1.2 \text{ fm}$
 $r_Q \gtrsim 20a \approx 2.3 \text{ fm}$

θ**-nEDM Feasible at the Physical Point?**

old def. of F3 Preliminary Results with m=330 MeV

 \odot Q sampled with $\Delta t_Q = 4a$, $r_Q = \infty$

Best guess for neutron EDM d_n : extrapolation in m_q~(m π)²

 \bullet chiral fermions, m π =330 MeV

 \Rightarrow phys.point $|F_3(0)| \approx 0.020$, $|dn| \approx 0.002$ *e* fm

Wilson fermions, $m\pi$ =360 MeV [Guo et al 2015]

 \Rightarrow phys.point $|F_3(0)| \le 0.012$, $|dn| \le 0.001$ *e* fm

$$
|F_{3n}^{\text{phys}}(0)| \sim O(10^{-2}) \theta, \quad |d_n| \sim O(10^{-3}) e \operatorname{fm} \theta
$$

Noise Reduction: θ**-induced EDFF F3**

PRELIMINARY 48c96 mpi=140MeV

EDFF F3 from constrained Q sum: *the most aggressive* Q cuts

- 33k lattice samples, ~ 30 M core-hours on Argonne BlueGene/Q
- \bullet connected diagrams only
- result compatible with zero, *|F3n|* ≤ 0.05

Need to constrain $|F_{3n}| \approx 0.01.0.02$: θ -nEDM remains difficult at the physical point...

Sergey N. Syritsyn

Outlook for θ**-nEDM**

Resort to simpler calculations

- heavier pion masses + EFT for extrapolations
- quenched calculations (see e.g. recent [J.Dragos et al,1711.04730])

Physical point calculations of θ-nEDM will be necessary to renormalize effects from other CPv sources of higher-dim. [T.Bhattacharya et at (2015)]

New lattice simulations at the physical point with dynamical θ^{*I*}-term

- coarse (a=0.2 fm) physical-point lattice \implies reduced cost due to lattice volume
- chiral lattice fermions allow independent *a*→0, *mq*→0 limits
- enhance d_N signal with $\langle Q \rangle \neq 0$ more critical at light quark masses

⟹*2018 ALCC award for 50 M BG/Q core-hours*

Ensembles with dynamical θ^{*I*}-term will be also useful for CPv πN coupling

Another Source of CPv: Quark Chromo-EDM

$$
\mathcal{L}_{\text{cEDM}} = \sum_{q=u,d} \frac{\tilde{\delta}_q}{2} \, \bar{q} \, [G_{\mu\nu} \sigma^{\mu\nu} \gamma_5] \, q
$$

O(a-2) mixing with dim-3 pseudoscalar density \Rightarrow need non-perturbative subtractions

Non-chiral (e.g.Wilson) fermions have a O(a) clover term ("chromo-magnetic DM") $\mathcal{L}^{\text{clover}} = a$ *c* 4 \bar{q} $[G_{\mu\nu}\sigma^{\mu\nu}]$ q

Condensate realignment in presense of CPv $q \rightarrow e^{i\gamma_5 \Omega}q$ assuring $\langle \text{vac}| \mathcal{L}_m + \mathcal{L}_{CP} | \pi^a \rangle = 0$

mixes (chromo)EDM and (chromo)MDM: $\delta\mathcal{L}_{\text{cEDM}} = \delta(\bar{q} [D_q G_{\mu\nu} \sigma^{\mu\nu} \gamma_5] q) = \bar{q} [\{\Omega, D_q\} G_{\mu\nu} \sigma^{\mu\nu}] q) \sim \delta\mathcal{L}_{\text{cMDM}}$

㱺 *Chirally-symmetric actions avoid these cMDM contributions*

Quark-Gluon EDM: Insertions of dim-5 Operators

$$
\mathcal{L}^{(5)} = \sum_{q} \tilde{d}_{q} \, \bar{q} (G \cdot \sigma) \gamma_{5} q \quad \Longleftrightarrow \quad \langle N(y) \, \bar{N}(0) \int d^{4}x \, \bar{q} (G \cdot \sigma) \gamma_{5} q \rangle
$$
\n
$$
\langle N(y) \, [\bar{\psi} \gamma^{\mu} \psi]_{z} \, \bar{N}(0) \int d^{4}x \, \bar{q} (G \cdot \sigma) \gamma_{5} q \rangle
$$
\nFirst calculate 148 .

First calculations : [T.Bhattacharya et al(LANL, LATTICE'15,'16)]

This work: Only quark-connected insertions

In future: Single- and double-disconnected diagrams (contribute to isosinglet cEDM, mix with *θ*-term)

Sergey N. Syritsyn

Nucleon Sachs Form Factors

Sergey N. Syritsyn

Nucleon EDMs on a Lattice CIPANP 2018, Palm Springs, CA

Parity Mixing (Proton)

$$
N_{\delta} = \epsilon^{abc} u_{\delta}^{a} (u^{aT} \mathcal{C} \gamma_{5} d^{c})
$$

$$
\langle N(t)\bar{N}(0)\rangle_{\mathcal{CP}} = \frac{-i\rlap{\,/}p + m_N e^{2i\alpha_5\gamma_5}}{2m_N}e^{-E_N t}
$$

$$
\hat{\alpha}_5 = \frac{\alpha_5}{\tilde{d}} = -\frac{\text{ReTr}\left[T^+\gamma_5 \cdot C_{2pt}^{\overline{CP}}(t)\right]}{\text{ReTr}\left[T^+ \cdot C_{2pt}^{CP}(t)\right]}, \quad t \to \infty
$$

(flavors labeled for the proton)

similarity effect on nucleon likely due to mixing between cEDM and PS

Proton & Neutron EDFF Form Factors (bare)

- $(5.5 \text{ fm})^3$ x (11 fm) box
- $m\pi$ =140 MeV
- connected-only
- no renormalization

Sergey N. Syritsyn

Previously reported lattice results for *θQCD*-induced nEDM contain spurious contributions from mixing with the anomalous mag.moment

Corrected *θQCD*-nEDM lattice values are small, consistent with zero Disagreement with phenomenology/EFT is eliminated Much higher lattice statistics are required to constrain of θ_{QCD}

Based on *preliminary* analysis at a heavier pion mass (330 MeV), at the physical point expect $|d_n| \approx (1.2) \times 10^{-3}$ *e* fm Even with variance-reduction techniques, O(300) M core*hours may be required

Promising results for *quark* cEDM-induced EDFF *Renormalization & mixing subtractions are underway*