Jet mass for the semi-inclusive jet production at the LHC

In collaboration with Zhong-Bo Kang, Xiaohui Liu, and Felix Ringer

Kyle Lee Stony Brook University

CIPANP 2018 05/29/18 - 06/03/18

Jets at the LHC

• Jets are produced copiously at the LHC

• At the LHC, 60 - 70 % of ATLAS & CMS papers use jets in their analysis!

Application of jet studies at the LHC

3

Cross Section

• Precision probe of QCD

• Constrain BSM Models

Fat jet from BSM signal

• Probe of quark gluon plasma

Processes of Interest

‣ We want to study semi-inclusive jet production event: $p + p \rightarrow$ Jet((with/without) substructure) + X

Plans of this talk

- **• Inclusive jet production**
- **• Formalism for jet mass measurements**
- **• Role of non-perturbative effects**
- **• The groomed jet mass**
- **• Conclusions**

Factorization

Example of NLO diagrams

• Relevant scales :

1.Hard scale: $\mu_H \sim p_T$ 2. Jet scale: $\mu_J \sim |p_T R|$

• For small-R jet, we have hierarchy between the two different scales and jet cross-section is factorized, $d\hat{\sigma}_{ab}^{jet} \rightarrow \sum \int \frac{d\hat{z}_c}{z^2} d\hat{\sigma}_{ab}^c J_c(z_c)$, giving *c* $\int dz_c$ *z*2 *c* $d\hat{\sigma}_{ab}^{c}$] $J_{c}(z_{c})$ $E \frac{d\sigma^{pp \to \text{jet}X}}{dp}$ $d\eta_J P_{T,J}$ $\propto \sum$ *a,b,c* $\int dx_a$ *xa* $f_a^p(x_a)$ $\int dx_b$ *xb* f_h^p $b^p(x_b)$ $\int dz_c$ *z*2 *c* $\left. d\hat{\sigma}_{ab}^{c}J_{c}(z_{c})\right\vert$

Factorization of Inclusive Jet Production

 D_c^h \rightarrow J_c

• Simple replacement of the fragmentation function by "semi-inclusive jet function" from semi-inclusive hadron production case.

Comparison with the inclusive hadron production case

Factorization

Inclusive Jet

Hadron

Evolution

 $\frac{d\sigma^{pp\to\text{jet}X}}{dp_T d\eta} = \sum_{a,b,c}$ $f_a\otimes f_b\otimes H^c_{ab}\big\vert \otimes J_c\ + \mathcal{O}(R^2)$ $\frac{d\sigma^{pp\to hX}}{dp_T d\eta} = \sum_{a,b,c}$ $f_a\otimes f_b\otimes H^c_{ab}\bigotimes D^h_c$

µ $\frac{d}{d\mu} J_i = \sum_j$ $P_{ji} \bigotimes J_j$ *µ d* $\frac{d}{d\mu}D_{i}^{h}=\sum_{i}$ *j* $P_{ji} \Big| \otimes D^h_j$

Kang, Ringer, Vitev `16

Comparison with the inclusive hadron production case

Evolution

Jet Substructure Measurements

• How do we measure substructure v inside the jet?

Jet mass

- $m_J^2 =$ $\sqrt{}$ $i \in J$ *pi* \setminus^2 • Jet mass $m_J^2 = \left(\sum p_i\right)$ for semi-inclusive jet production, $pp \rightarrow$ (jet m_J^2 $+ X$
- Useful in discriminating quark and gluon jets.
- Tagger for boosted objects.
- Related to jet angularity $(a = 0)$

Jet mass

- $m_J^2 =$ $\sqrt{}$ $i \in J$ *pi* \setminus^2 • Jet mass $m_J^2 = \left(\sum p_i\right)$ for semi-inclusive jet production, $pp \rightarrow$ (jet m_J^2 $+ X$
- Useful in discriminating quark and gluon jets.
- Tagger for boosted objects.
- Related to jet angularity ($a = 0$)
- A generalized class of IR safe observables, angularity (applied to jet):

$$
\tau_a^{e^+e^-} = \frac{1}{E_J} \sum_{i \in J} E_i \theta_{iJ}^{2-a} \qquad \tau_0^{pp} = \frac{m_J^2}{p_T^2} + \mathcal{O}\left(\left(\tau_0^{pp}\right)^2\right)
$$

$$
\tau_a^{pp} = \frac{1}{p_T} \sum_{i \in J} p_{T,i} (\Delta R_{iJ})^{2-a}
$$

- $a=0$ related to thrust (jet mass)
- a=1 related to jet broadening (sensitive to rapidity divergence)
- Many studies done for exclusive case : *Sterman et al. `03, `08,*

Hornig, C. Lee, Ovanesyan `09, Ellis, Vermilion, Walsh, Hornig, C.Lee `10, Chien, Hornig, C. Lee `15, Hornig, Makris, Mehen `16

Jet angularity (jet mass, a=0)

- Replace $J_c(z, p_T R, \mu) \rightarrow \mathcal{G}_c(z, p_T R, \tau_a, \mu)$
- When $\tau_a \ll R^2$, refactorize \mathcal{G}_c as

$$
\mathcal{G}_c(z, p_T R, \tau_a, \mu) = \sum_i \mathcal{H}_{c \to i}(z, p_T R, \mu)
$$

$$
\times \int d\tau_a^{C_i} d\tau_a^{S_i} \delta(\tau_a - \tau_a^{C_i} - \tau_a^{S_i}) C_i(\tau_a^{C_i}, p_T \tau_a^{\frac{1}{2-a}}, \mu) S_i(\tau_a^{S_i}, \frac{p_T \tau_a}{R^{1-a}}, \mu)
$$

- Each pieces describe physics at different scales.
- $\mu_J \rightarrow \mu_H$ evolution follows DGLAP evolution equation again
- Resums $(\alpha_s \ln R)^n$ and $(\alpha_s \ln^2 \frac{R}{1/(2 \pi)})$ $\tau_a^{1/(2-a)}$) *n*

•
$$
\int \frac{d\sigma}{dp_T dp d\tau_a} d\tau_a = \frac{d\sigma}{dp_T d\eta} \Leftrightarrow \int_0^\infty d\tau_a \mathcal{G}_i(z, p_T, R, \tau_a, \mu) = J_i(z, p_T, R, \mu)
$$

See also Chien, Hornig, C. Lee `15

- When we measure substructure v from the jet, once we evolve to μ_J the remaining evolution to μ_H is given by DGLAP evolution!
- Two step factorization: a) production of a jet b) probing the internal structure of the jet produced.

Quark and gluon discrimination

• We can study how well angularity discriminates between quark and gluon jet as a continuous function of 'a'.

Quark and gluon discrimination

- We can study how well angularity discriminates between quark and gluon jet as a continuous function of 'a'.
- As 'a' increases, better discrimination but more sensitive to non-perturbative effects.

• Non-perturbative effects:

• Non-perturbative effects:

• Multi-Parton Interactions (MPI) (Underlying Events (UE))

Multiple secondary scatterings of partons within the protons may enter and contaminate jet.

• Pileups

Secondary proton collisions in a bunch may enter and contaminate jet.

• Non-perturbative effects:

• As τ_a gets smaller, $\mu_s \sim \frac{p_T \tau_a}{R^{1-a}}$ (smallest scale) can approach a non-perturbative scale.

We shift our perturbative results by convolving with non-perturbative shape function to smear *d* ◆

$$
\frac{d\sigma}{d\eta dp_T d\tau_a} = \int dk F(k) \frac{d\sigma^{\text{pert}}}{d\eta dp_T d\tau_a} \left(\tau_a - \frac{R^{1-a}}{p_T}k\right)
$$

Single parameter NP soft function :

$$
F_{\kappa}(k) = \left(\frac{4k}{\Omega_{\kappa}^2}\right) \exp\left(-\frac{2k}{\Omega_{\kappa}}\right)
$$
Stewart, Tackmann, Waalewijn '15

- Both hadronization and MPI effects in jet mass is well-represented by just shifting first-moments.
- $\int dk \, k \, F_{\kappa}(k) = \Omega_{\kappa}(R)$, represents the non-perturbative parameter and \sim corresponds to non-perturbative effects coming primarily from the hadronization alone. z
Z *dk k* $F_{\kappa}(k) = \Omega_{\kappa}(R)$, represents the non-perturbative parameter and $\sim 1 \text{ GeV} \sim \Lambda_{\text{hadrons}}$

• Underlying Events (UE) are difficult to understand.

How do we get a better hold of these contaminations in the jet?

• Hint : contamination generally from soft radiations.

• Underlying Events (UE) are difficult to understand.

How do we get a better hold of these contaminations in the jet?

• Hint : contamination generally from soft radiations.

Groom jets to reduce sensitivity to wide-angle soft radiation.

• Underlying Events (UE) are difficult to understand.

How do we get a better hold of these contaminations in the jet?

• Hint : contamination generally from soft radiations.

Groom jets to reduce sensitivity to wide-angle soft radiation.

• Also reduces sensitivities to the NGLs associated with the correlation between in-jet and out-of-jet radiation.

• Underlying Events (UE) are difficult to understand.

How do we get a better hold of these contaminations in the jet?

• Hint : contamination generally from soft radiations.

Groom jets to reduce sensitivity to wide-angle soft radiation.

- **• Soft drop grooming algorithms:**
- 1. Reorder emissions in the identified jet according to their relative angle using C/A jet algorithm.
- 2. Recursively remove soft branches until soft drop condition is met:

$$
\frac{\min[p_{T,i}, p_{T,j}]}{p_{T,i} + p_{T,j}} > z_{\text{cut}} \left(\frac{R_{ij}}{R}\right)^{\beta}
$$

Larkoski, Marzani, Soyez, Thaler `14 Frye, Larkoski, Schwartz, Yan `16

Groomed jet mass factorization

• The ungroomed case ($\tau \ll R^2$)

$$
\mathcal{G}_i(z, p_T R, \tau, \mu) = \sum_j \mathcal{H}_{i\to j}(z, p_T R, \mu) C_j(\tau, p_T, \mu) \otimes S_j(\tau, p_T, R, \mu)
$$

- **Resums global logs** $\alpha_s^n \ln^n R$ and $\alpha_s^n \ln^{2n} \tau/R^2$
	- The groomed case ($\tau_{\rm gr}/R^2 \ll z_{\rm cut} \ll 1$)

 $\mathcal{G}_i(z, p_T R, \tau_\text{gr}, z_\text{cut}, \beta, \mu) = \sum_{\sigma}$ *j* $\mathcal{H}_{i\rightarrow j}(z,p_{T}R,\mu)S_{j}^{\notin\operatorname{gr}}(p_{T},R,z_{\text{cut}},\beta,\mu)C_{j}(\tau,p_{T},\mu)\otimes S_{j}^{\in\operatorname{gr}}(\tau,p_{T},R,z_{\text{cut}},\beta,\mu)$

• Resums global logs $\alpha_s^n \ln^n R$, $\alpha_s^n \ln^{2n} \tau/R^2$, and $\alpha_s^n \ln^{2n} z_{\text{cut}}$

Non-global Logarithms

Dasgupta, Salam `01 and many more

0000000

0000000000

• The ungroomed case ($\tau \ll R^2$)

$$
\mathcal{G}_i(z, p_T R, \tau, \mu) = \sum_j \mathcal{H}_{i \to j}(z, p_T R, \mu) C_j(\tau, p_T, \mu) \otimes S_j(\tau, p_T, R, \mu)
$$

• Non-global logs directly affect the jet mass spectrum.

$$
\alpha_s^n \ln^n(\tau/R^2) \qquad n \ge 2
$$

• The ground case (
$$
\tau_{\rm gr}/R^2 \ll z_{\rm cut} \ll 1
$$
)

 $\mathcal{G}_i(z, p_T R, \tau_\text{gr}, z_\text{cut}, \beta, \mu) = \sum_{\sigma}$ *j* $\mathcal{H}_{i\rightarrow j}(z,p_{T}R,\mu)S_{j}^{\notin\operatorname{gr}}(p_{T},R,z_{\text{cut}},\beta,\mu)C_{j}(\tau,p_{T},\mu)\otimes S_{j}^{\in\operatorname{gr}}(\tau,p_{T},R,z_{\text{cut}},\beta,\mu)$

> **• Non-global logs affects only indirectly affects the jet mass spectrum through normalization.**

$$
\alpha_s^n \ln^n(z_{\rm cut}) \qquad n \ge 2
$$

Limit to the ungroomed case

• Soft drop condition is passed trivially when $\beta \to \infty$ \Leftrightarrow returns ungroomed case.

Phenomenology (groomed jet mass)

Kang, KL, Liu, Ringer `18

- Developed the formalism for single inclusive groomed jet mass cross-section.
- Shows very good agreement with the data.
- $\Omega_k = 1 \text{ GeV} \implies \text{Reduced contamination as expected.}$ NP effects mostly from hadronization.

See also ATLAS, arXiv:1711.08341 CMS PAS HIN-16-024 Larkoski, Marzani, Soyez, Thaler `14 Frye, Larkoski, Schwartz, Yan `16

Conclusions

- Formalism for studying semi-inclusive jet production with or without substructure measurements were introduced.
- From μ_J to μ_H , the semi-inclusive jet production follows DGLAP evolution.
- Discussed various non-perturbative effects and grooming which reduces contamination from the Underlying Events and Pileups.
- Resummation of R , τ , z_{cut} .
- Continuous parameter dependence on quark and gluon discrimination power was considered.
- We now have a consistent baseline calculation for jet mass in pp. Extend to jet mass in heavy ion collisions!