Experimental Signals of Ultra-light Dark Matter

Surjeet Rajendran, UC Berkeley

Standard Model scale ~ 100 GeV

One Possibility: Same scale for Dark Matter? Weakly Interacting Massive Particles (WIMPs)

Standard Model scale ~ 100 GeV

One Possibility: Same scale for Dark Matter? Weakly Interacting Massive Particles (WIMPs)

Other Generic Candidates: Axions, Massive Vector Bosons

Standard Model scale ~ 100 GeV

One Possibility: Same scale for Dark Matter? Weakly Interacting Massive Particles (WIMPs)

Other Generic Candidates: Axions, Massive Vector Bosons

How do we search for them? This Talk: Bosons between 10 GHz - 10-7 Hz Range includes popular candidates such as the QCD axion

Photons

$$
\vec{E} = E_0 \cos(\omega t - \omega x)
$$

Detect Photon by measuring time varying field

Photons

Early Universe: Misalignment Mechanism

Dark Bosons

$$
\vec{E} = E_0 \cos(\omega t - \omega x)
$$

Detect Photon by measuring time varying

$$
a(t) \sim a_0 \cos(m_a t)
$$

field Spatially uniform, oscillating field

 $m_a^2 a_0^2 \sim \rho_{DM}$

Dark Bosons

Photons

Early Universe: Misalignment Mechanism

Today: Random Field

Detect Photon by measuring time varying field

 $\vec{E} = E_0 \cos{(\omega t - \omega x)}$

$$
a(t) \sim a_0 \cos(m_a t)
$$

Spatially uniform, oscillating field

$$
m_a^2 a_0^2 \sim \rho_{DM}
$$

Correlation length \sim 1/(m_a v) Coherence Time \sim 1/(m_a v²)

 \sim 1 s (MHz/m_a)

Dark Bosons

Photons

Early Universe: Misalignment Mechanism

Today: Random Field

Detect Photon by measuring time varying field

 $\vec{E} = E_0 \cos{(\omega t - \omega x)}$

$$
a(t) \sim a_0 \cos(m_a t)
$$

Spatially uniform, oscillating field

$$
m_a^2 a_0^2 \sim \rho_{DM}
$$

Correlation length \sim 1/(m_a v)

Coherence Time \sim 1/(m_a v²) \sim 1 s (MHz/m_a)

Detect effects of oscillating dark matter field

Resonance possible. $Q \sim 10^6$ (set by $v \sim 10^{-3}$)

What kind of Bosons?

Naturalness. Structure set by symmetries.

Many UV theories

Observable Effects

What can the dark matter wind do?

Observable Effects

What can the dark matter wind do?

What can a classical field do?

Observable Effects

What can the dark matter wind do?

What can a classical field do?

Dark Matter

Oscillating Dark Matter Field (just like oscillating EM field from CMB)

HEISING - SIMONS FOUNDATION

Cosmic Axion Spin Precession Experiment (CASPEr)

with

Dmitry Budker Peter Graham Micah Ledbetter Alex Sushkov

> PRX **4** (2014) arXiv: 1306.6089 PRD **88** (2013) arXiv: 1306.6088 PRD **84** (2011) arXiv: 1101.2691

Neutron

Neutron in Axion Wind

$$
\begin{pmatrix}\n\frac{\partial_{\mu}a}{f_a}\bar{N}\gamma^{\mu}\gamma_5 N\n\end{pmatrix}
$$
\n
$$
H_N \supset \frac{a}{f_a}\vec{v_a}.\vec{S}_N
$$

Spin rotates about dark matter velocity

Neutron in Axion Wind

$$
\begin{pmatrix}\n\frac{\partial_{\mu}a}{\partial a}\bar{N}\gamma^{\mu}\gamma_5 N\n\end{pmatrix}
$$
\n
$$
H_N \supset \frac{a}{\partial a}\vec{v_a}.\vec{S}_N
$$

Spin rotates about dark matter velocity

Neutron in Axion Wind

$$
\begin{array}{c}\n\left(\frac{\partial_{\mu}a}{f_a}\bar{N}\gamma^{\mu}\gamma_5 N\right)\n\\
H_N \supset \frac{a}{f_a}\vec{v_a}.\vec{S}_N\n\end{array}
$$

Spin rotates about dark matter velocity

Effective time varying magnetic field

$$
B_{eff} \lessapprox 10^{-16} \cos(m_a t) \text{ T}
$$

Neutron in Axion Wind

$$
\begin{array}{c}\n\left(\frac{\partial_{\mu}a}{f_a}\bar{N}\gamma^{\mu}\gamma_5 N\right)\n\\
H_N \supset \frac{a}{f_a}\vec{v_a}.\vec{S}_N\n\end{array}
$$

Spin rotates about dark matter velocity

Effective time varying magnetic field

$$
B_{eff} \lessapprox 10^{-16} \cos(m_a t) \text{ T}
$$

Other light dark matter (e.g. dark photons) also induce similar spin precession

Neutron in Axion Wind

$$
\begin{array}{c}\n\left(\frac{\partial_\mu a}{f_a}\bar{N}\gamma^\mu\gamma_5 N\right)\n\\
H_N \supset \frac{a}{f_a}\vec{v_a}.\vec{S}_N\n\end{array}
$$

$$
T_N \supseteq \frac{T}{f_a} v_a . \Im N
$$

Spin rotates about

dark matter velocity

Effective time varying magnetic field

$$
B_{eff} \lessapprox 10^{-16} \cos(m_a t) \text{ T}
$$

Other light dark matter (e.g. dark photons) also induce similar spin precession

QCD Axion

Neutron

General Axions

QCD Axion

Neutron in Axion Wind

 \vec{v} $\int \partial_\mu a$ $\frac{\partial_\mu a}{\partial s} \bar{N} \gamma^\mu \gamma_5 N\Big)$ $H_N \supset \frac{a}{f_a}$ $v_a^-. \vec{S}$ *N*

> Spin rotates about dark matter velocity

Effective time varying magnetic field

 $B_{eff} \leq 10^{-16} \cos(m_a t)$ T

Other light dark matter (e.g. dark photons) also induce similar spin precession

Neutron in QCD Axion Dark Matter

 \int_a f_a $G\tilde{G}$ \setminus

QCD axion induces electric dipole moment for neutron and proton

> Dipole moment along nuclear spin

Oscillating dipole: $d \sim 3 \times 10^{-34} \cos(m_a t) e$ cm

General Axions

QCD Axion

Neutron in Axion Wind

 \vec{v} $\int \partial_\mu a$ $\frac{\partial_\mu a}{\partial s} \bar{N} \gamma^\mu \gamma_5 N\Big)$ $H_N \supset \frac{a}{f_a}$ $v_a^-. \vec{S}$ *N*

Spin rotates about dark matter velocity

Effective time varying magnetic field

$$
B_{eff} \lessapprox 10^{-16} \cos(m_a t) \text{ T}
$$

Other light dark matter (e.g. dark photons) also induce similar spin precession

Neutron in QCD Axion Dark Matter

QCD axion induces electric dipole moment for neutron and proton

> Dipole moment along nuclear spin

Oscillating dipole: $d \sim 3 \times 10^{-34} \cos(m_a t) e$ cm

Apply electric field, spin rotates

General Axions

QCD Axion

Neutron in Axion Wind

 \vec{v} $\int \partial_\mu a$ $\frac{\partial_\mu a}{\partial s} \bar{N} \gamma^\mu \gamma_5 N\Big)$ $H_N \supset \frac{a}{f_a}$ $v_a^-. \vec{S}$ *N*

Spin rotates about dark matter velocity

Effective time varying magnetic field

$$
B_{eff} \lessapprox 10^{-16} \cos(m_a t) \text{ T}
$$

Other light dark matter (e.g. dark photons) also induce similar spin precession

Neutron in QCD Axion Dark Matter

QCD axion induces electric dipole moment for neutron and proton

> Dipole moment along nuclear spin

Oscillating dipole: $d \sim 3 \times 10^{-34} \cos(m_a t) e$ cm

Apply electric field, spin rotates

General Axions

QCD Axion

Neutron in Axion Wind

Neutron in QCD Axion Dark Matter

 $\int \partial_\mu a$ $\frac{\partial_\mu a}{\partial s} \bar{N} \gamma^\mu \gamma_5 N\Big)$

$$
H_N \supset \tfrac{a}{f_a} \vec{v_a}.\vec{S}_N
$$

Spin rotates about dark matter velocity

Effective time varying magnetic field

$$
B_{eff} \lessapprox 10^{-16} \cos(m_a t) \text{ T}
$$

Other light dark matter (e.g. dark photons) also induce similar spin precession

Measure Spin Rotation, detect Axion

QCD axion induces electric dipole moment for neutron and proton

> Dipole moment along nuclear spin

Oscillating dipole: $d \sim 3 \times 10^{-34} \cos(m_a t) e$ cm

Apply electric field, spin rotates

CASPEr

Axion affects physics of nucleus, NMR is sensitive probe

Larmor frequency $=$ axion mass \rightarrow resonant enhancement

CASPEr

Axion affects physics of nucleus, NMR is sensitive probe

Larmor frequency $=$ axion mass \rightarrow resonant enhancement

SQUID measures resulting transverse magnetization

NMR well established technology, noise understood, similar setup to previous experiments

Example materials: LXe, ferroelectric PbTiO₃, many others

 \sim year to scan one decade of frequency

Verify signal with spatial coherence of axion field

10-4 nuclear polarization, 24 hr integration time

Dark Matter Detection with Accelerometers

with

Peter Graham David Kaplan Jeremy Mardon William Terrano

B-L Dark Matter

Other than electromagnetism, only other anomaly free standard model current

$$
\mathcal{L} = -\frac{1}{4} \left(F'_{\mu\nu} F'^{\mu\nu} \right) + \frac{1}{2} m_{\gamma'}^2 A'_\mu A'^\mu - g J_{B-L}^\mu A'_\mu
$$

Protons, Neutrons, Electrons and Neutrinos are all charged

Electrically neutral atoms are charged under B-L

Force experiments constrain $g < 10^{-21}$

B-L Dark Matter

Other than electromagnetism, only other anomaly free standard model current

$$
\mathcal{L} = -\frac{1}{4} \left(F'_{\mu\nu} F'^{\mu\nu} \right) + \frac{1}{2} m_{\gamma'}^2 A'_{\mu} A'^{\mu} - g J^{\mu}_{B-L} A'_{\mu}
$$

Protons, Neutrons, Electrons and Neutrinos are all charged

Electrically neutral atoms are charged under B-L

Force experiments constrain $g < 10^{-21}$

oscillating *E'* **field (dark matter) can accelerate atoms**

Force depends on net neutron number - violates equivalence principle. Dark matter exerts time dependent equivalence principle violating force!

The Relaxion

$$
\mathcal{L} \supset (-M^2 + g \phi)|h|^2 + gM^2\phi + g^2\phi^2 + \cdots + \Lambda^4 \cos \frac{\phi}{f}
$$

Hierarchy problem solved through cosmic evolution - does not require any new physics at the LHC

 ϕ is a light scalar coupled to higgs with small coupling g

$$
Dark\ matter\ \phi \implies \phi = \phi_0 \cos(m_\phi(t - \vec{v}.\vec{x}))
$$

Time variation of masses of fundamental particles

$$
\implies \text{ force on atoms } \frac{g\nabla\phi}{v}m_q \sim \frac{gm_\phi \vec{v}}{v}m_q
$$

Force violates equivalence principle. Time dependent equivalence principle violation!

Detection Options

Measure relative acceleration between different elements/isotopes.

Leverage existing EP violation searches and work done for gravitational wave detection

Force from dark matter causes torsion balance to rotate

Measure angle, optical lever arm enhancement

Atom Interferometer

Differential free fall acceleration

Stanford Facility

Pulsar Timing Arrays

Pulsars are known to have stable rotation - can be used as clocks

Presently used to search for low frequency (100 nHz) gravitational waves.

Pulsar signal modulates due to gravitational wave passing between earth and the pulsar

Pulsar Timing Arrays

Pulsars are known to have stable rotation - can be used as clocks

Presently used to search for low frequency (100 nHz) gravitational waves.

Pulsar signal modulates due to gravitational wave passing between earth and the pulsar

Force by dark matter causes relative acceleration between Earth and Pulsar, leading to modulation of signal

Pulsar Timing Arrays

Pulsars are known to have stable rotation - can be used as clocks

Presently used to search for low frequency (100 nHz) gravitational waves.

Pulsar signal modulates due to gravitational wave passing between earth and the pulsar

Force by dark matter causes relative acceleration between Earth and Pulsar, leading to modulation of signal

Relaxion changes electron mass at location of Earth - changes clock comparison

Projected Sensitivities

Projected Sensitivities

Atom interferometers by shot noise

Poor observational constraints on dark matter

Experiments under development can now search for dark matter particles with mass between 10-22 eV - 10-5 eV, using a variety of precision measurement tools

Need to develop tools to cover full range of possibilities