PHENIX results on collectivity in small systems Sylvia Morrow, for the PHENIX collaboration

PRC 96, 064905 (2017) PRL 120, 062302 (2018) arXiv:1710.09736, accepted PRC arXiv:1805.02973, submitted Nature Physics

What is the origin of collectivity in small systems? If it's quark-gluon plasma we expect to see signatures of a perfect fluid...

Can we turn
it off?Common
velocity field?Geometry-
driven flow?

Multiple measurements to test the flow hypothesis

Can we turn it off?

CIPANP 2018, Palm Springs

3

Beam energy scan

How long does a quark-gluon plasma droplet have to last to see final state effects?

$\sqrt{s_{NN}} [GeV]$	$d\!\!+\!\!\mathrm{Au}$	
200	\checkmark	
62.4	\checkmark	A a anarat daaraa anatam
39	\checkmark	spends less time as hot matter
19.6	\checkmark	

CIPANP 2018, Palm Springs

4

d+Au 200 GeV $v_2(N_{\mathrm{tracks}})$: data

η separation reduces non-flow contributions Different kinematics

• $v_2\{2\}$ is above $v_2\{2, | \eta | > 2\}, v_2\{4\}, \text{ and } v_2\{6\}$ $v_2\{4\}$ is consistent with $v_2\{6\}$ $\therefore v_2\{4\}$ dominated by flow

d+Au BES $v_2(N_{\text{tracks}})$: data

d+Au BES $v_2(\eta)$: data

$\eta \xrightarrow{-4 - 3 - 2 - 1} 0 1 2 3 4$ $\xrightarrow{\qquad BBC FVTX CA FVTX BBC}$ $Au-going \quad d-going$ BBCS (Au-going side) used as event plane detector

CIPANP 2018, Palm Springs

6

<u>d</u>+Au BES $v_2(\eta)$: data and parton transport PHiENIX

- AMPT replicates asymmetric shape
- For lower energies at $\eta < 0$, EP crosses parton plane: non-flow decreases signal magnitude

CIPANP 2018, Palm Springs

7

May 31, 2018

parton cross section: 0.75 mb

d+Au BES $v_2(\eta)$: data and parton transport PHiENIX

- Parton plane gives $v_2 = 0$, consistent with expectations • Event plane has given all (larger for n < 0)
- Event plane has signal (larger for $\eta < 0$)

Common velocity field?

CIPANP 2018, Palm Springs

Identified particles

Ratio of pion $v_2(p_T)$ to proton $v_2(p_T)$ some uncertainty cancels

Two model formalisms

	Hydrodynamic	Parton transport
	SONIC	\mathbf{AMPT}
Initial conditions	MC Glauber	MC Glauber
Particle production	N/A	String melting
Expansion	Viscous hydrodynamics	Parton scattering
Hadronization	Cooper-Frye	Spatial coalescence/ quark recombination
Final stage	Hadron cascade	Hadron cascade

Macroscopic

Microscopic

CIPANP 2018, Palm Springs

 $\mathbf{14}$

Two model formalisms

	Hydrodynamic	Parton transport
	SONIC	AMPT
Initial conditions	MC Glauber	MC Glauber
Particle production	N/A	String melting
Expansion	Viscous hydrodynamics	Parton scattering
Hadronization	Cooper-Frye	Spatial coalescence/ quark recombination
Final stage	Hadron cascade	Hadron cascade

Macroscopic

Microscopic

CIPANP 2018, Palm Springs

 $\mathbf{14}$

Low p_T is well-described

CIPANP 2018, Palm Springs

Low p_T is well-described Misses slope at high p_T

• AMPT relies on hadronic rescattering at low p_T

CIPANP 2018, Palm Springs

- AMPT relies on hadronic rescattering at low p_T
- High p_T mass splitting from quark recombination

16

AMPT (no hadronic rescattering)

Data

AMPT

CIPANP 2018, Palm Springs

hydrodynamics, though alternative explanations exist

- -∎— Data
- iebe-vishnu
- ••• AMPT
 - AMPT (no hadron rescattering)
- superSONIC

CIPANP 2018, Palm Springs

Geometry-driven flow?

CIPANP 2018, Palm Springs

<u>Geometry scan</u>

Are final state momentum correlations driven by initial state geometry?

CIPANP 2018, Palm Springs

Hydrodynamic description

SONIC evolution

Eccentricities

Y

 $\mathbf{21}$

 $v_{\rm n}(p_T)$ measurement in small systems PH*ENIX

S. Morrow

$v_{\rm n}(p_T)$ measurement in small systems PH*ENIX

Confirms flow as geometric in origin

Final state correlation mechanism

Hydrodynamics

initial spatial correlation

Initial state momentum correlation model

initial momentum correlation

 $\Rightarrow \Rightarrow \Rightarrow$

Reasonable description of $v_2(p_T)$, but misses strong geometry dependence in $v_3(p_T)$

 $- \bullet - v_2$ Data

→ v₃ Data

v_n CGC postdiction arXiv:1805.09342 • Systematic uncertainty not quantified

• Assumes Q_s (deuteron) > Q_s (proton) and that domains not resolved individually (Q_s = saturation scale)

CIPANP 2018, Palm Springs

• Both use $\eta/s=0.08$, MC Glauber initial conditions,

 $\mathbf{25}$

v_n iEBE-VISHNU PRC 95, 014906 (2017)

CIPANP 2018, Palm Springs

Conclusion

- Final state correlations at all BES energies
- PRC 96, 064905 (2017) and PRL 120, 062302 (2018)
- Mass ordering consistent with common velocity field
- arXiv:1710.09736
- Flow is geometric arXiv:1805.02973

PH*ENIX

The collection of measurements is best described by hydro which includes QGP
Strong evidence for QGP in small systems

S. Morrow

CIPANP 2018, Palm Springs

Backup

CIPANP 2018, Palm Springs

PHENIX small systems papers

- Creating small circular, elliptical, and triangular droplets of quark-gluon plasma arXiv:1805.02973, submitted Nature Physics
- Measurement of mass-dependent azimuthal anisotropy in central p+Au, d+Au, and ³He+Au collisions at $\sqrt{s_{NN}} = 200$ GeV <u>arXiv:1710.09736</u>, accepted PRC
- Measurements of multiparticle correlations in d+Au collisions at 200, 62.4, 39, and 19.6 GeV and p+Au collisions at 200 GeV and implications for collective behavior PRL 120, 062302 (2018)
- Measurements of azimuthal anisotropy and charged-particle multiplicity in d+Au collisions at $\sqrt{s_{NN}} = 200, 62.4, 39$, and 19.6 GeV <u>PRC 96, 064905 (2017)</u>
- Measurement of long-range angular correlations and azimuthal anisotropies in high multiplicity p+Au collisions at $\sqrt{s_{NN}} = 200 \text{ GeV } \underline{PRC 95, 034910 (2017)}$
- Measurements of elliptic and triangular flow in high-multiplicity ³He+Au collisions at $\sqrt{s_{NN}} = 200 \text{ GeV } \underline{PRL 115, 142301 (2015)}$
- Quadrupole anisotropy in dihadron azimuthal correlations in central d+Au collisions at $\sqrt{s_{NN}} = 200 \text{ GeV } \underline{PRL 111, 212301 (2013)}$
- Measurement of long-range angular correlation and quadrupole anisotropy of pions and (anti)protons in central d+Au collisions at $\sqrt{s_{NN}} = 200 \text{ GeV } \underline{\text{PRL } 114, 192301}$ (2015) CIPANP 2018, Palm Springs May 31, 2018

$v_{\rm n}(p_T)$ measurement in small systems PH*ENIX

brand new in arXiv:1805.02973

CIPANP 2018, Palm Springs

May 31, 2018

S. Morrow

Cartoon of (some) PHENIX sub-detectors

- Event plane measured in south BBC (beam-beam counter) and/or south FVTX (forward vertex detector)
- Particle tracks measured in the central arms
- Measure in south (Au-going side) because multiplicity is greater

- Parton transport model with the same parameters for all systems (above) doesn't well-describe all measurements simultaneously
- Not clear that AMPT can describe small and large systems with a
- \mathbf{v}_2 Data
- ↓ v₃ Data
- v_n AMPT

common set of parameters

Calculated using parton plane : doesn't include nonflow

Initial state momentum correlation model PH*ENIX

- Uncorrelated momentum domains in a nucleon
- $Q_s = saturation scale$

S. Morrow

If each nucleon creates a well-separated (individually resolved) hot spot, uncorrelated nucleon momenta dilute overall initial state momentum correlations which, if translated to final state momentum correlations, suggests: $v_n^{p+Au} > v_n^{d+Au} > v_n^{3}He+Au$ which is clearly not the case in the data

CGC calculation on slide 25 assumes Q_s (deuteron) > Q_s (proton) and that domains not resolved individually in this p_T range

 $\mathbf{32}$

CIPANP 2018, Palm Springs

d+Au BES $v_2(p_T)$: data and hydro

Measured signal at all energies (similar magnitude)
Flow & non-flow

 $\mathbf{33}$

d+Au BES $v_2(p_T)$: data and hydro

Macroscopic models (flow)

- Describe measured signal at high energies
- Underestimate measure signal at low energies

$v_2(p_T)$ in $p/d/{}^3\mathrm{He}\mathrm{+Au}$ from hydrodynamics PHstENIX

• Both hydrodynamic models predict flow ordering that matches eccentricity ordering: $v_2^{p+Au} < v_2^{d+Au} \approx v_2^{3}He+Au$

May 31, 2018

S. Morrow

$v_3(p_T)$ in $p/d/{}^3\mathrm{He}\mathrm{+Au}$ from hydrodynamics phstENIX

36

• SONIC flow ordering matches eccentricity ordering:

• iEBE-VISHNU does not predict: $v_3^{p+Au} \approx v_3^{d+Au}$

May 31, 2018

 $v_3^{p+Au} \approx v_3^{d+Au} < v_3^{3}He+Au$

S. Morrow

Abstract

To answer the question of how small a system can be while still exhibiting collective behavior, the PHENIX experiment has used RHIC's extraordinary versatility to design a set of experiments controlling the initial geometry of the collisions by selecting different colliding species, $p/d/^{3}$ He+Au. In addition, a beam energy scan with d+Au collisions was done to vary the lifetime of the system while keeping the initial geometry constant.

In this talk we show PHENIX measurements of elliptic and triangular flow of charged hadrons and elliptic flow of identified hadrons at midrapidity as a function of transverse momentum in $p/d/^{3}$ He+Au collisions at 200 GeV per nucleon center-of-mass energy. Measurements of elliptic flow of charged hadrons in d+Au collisions at 200, 62.4, 39, and 19.6 GeV per nucleon center-of-mass energy will also be presented as a function of transverse momentum and pseudorapidity.

In order to asses the origin of collectivity in the smallest systems, these results are compared with several theoretical models that produce azimuthal particle correlations based on initial and/or final state effects. Hydrodynamical models which include a droplet of quark gluon plasma provide the best simultaneous description of our observations.

