

Electromagnetic Properties of Antihydrogen and the the Antiproton: Recent results from ALPHA and BASE

Daniel Maxwell ALPHA Collaboration

1

Antiprotons at CERN

The antiproton decelerator (AD) provides \sim 2x10⁷ antiprotons every 120 s at $~5$ MeV.

S. Maury *et al*., Hyp. Int. **109**, 43 (1997).

CIPANP 2018, Daniel Maxwell - Swansea University

 $\overline{}$

Summary of AD physics

- Aim: Tests of CPT invariance and the weak equivalence principle through direct measurements on antimatter.

- Motivation: Search for evidence of physics beyond the standard model, insight into the matter/antimatter asymmetry problem.

Talk Outline

- Recent results from BASE: measurement of antiproton magnetic moment.
- Recent results from ALPHA: measurement of antihydrogen 1S-2S lineshape, and antihydrogen ground-state hyperfine splitting.
- Outlook for antihydrogen physics at ALPHA.

BASE overview

Kracke, C. Leiteritz, W. Quint, C. Smorra, J.Walz**, Nature 509, 596 (2014)**

g/2 = 2.792847350 (7) (6)

First direct high precision measurement of the proton magnetic moment.

Cyclotron Motion

Larmor Precession

(Image-current measurements)

$$
\omega_c = \frac{q}{m_p} B
$$

7

(Continuous Stern Gerlach effect)

$$
C = \frac{q}{m_p} B \qquad \qquad \omega_L = g \frac{q}{2m_p} B
$$

The ratio of these frequencies gives g, the magnetic moment in units of μ_N .

$$
\frac{\omega_L}{\omega_c} = \frac{g_{\bar{p}}}{2} = \frac{\mu_{\bar{p}}}{\mu_N}
$$

Magnetic Moment Measurements

Use the continuous Stern Gerlach effect:

 $B_z = B_0 + B_2 (z^2 - \frac{\rho^2}{2})$ Penning Trap (a "magnetic bottle"). $B_z = B_0 + B_2(z^2 - \frac{\rho^2}{2})$ - A highly inhomogeneous magnetic field is super-imposed on the

- Energy of magnetic dipole in magnetic field: Φ_{*M*} = −(\rightarrow $\vec{\mu}_{_p}$ \cdot \Rightarrow *B*)

- Inhomogeneity leads to spin-dependent quadratic axial potential – axial frequency depends on spin state. $\Delta v_z \sim \frac{\mu_{\overline{p}} B_2}{m}$ $m_{\overline{p}}v_{\overline{z}}$

Magnetic Moment Measurements

Use the continuous Stern Gerlach effect:

 $B_z = B_0 + B_2 (z^2 - \frac{\rho^2}{2})$ Penning Trap (a "magnetic bottle"). $B_z = B_0 + B_2(z^2 - \frac{\rho^2}{2})$ - A highly inhomogeneous magnetic field is super-imposed on the

- Energy of magnetic dipole in magnetic field: Φ_{*M*} = −(\rightarrow $\vec{\mu}_{_p}$ \cdot \Rightarrow *B*)
- Inhomogeneity leads to spin-dependent quadratic axial potential – axial frequency depends on spin state. $\Delta v_z \sim \frac{\mu_{\overline{p}} B_2}{m}$ $m_{\overline{p}}v_{\overline{z}}$

- Very challenging for proton/antiproton system: $B_2 \sim 3 \times 10^5$ T/m² $\rightarrow \Delta v_z \sim 170$ mHz

- Spin-flips are driven using a RF-field, and the resulting axial frequency shift measured.

9

- J DiSciacca *et al.* (ATRAP), Phys. Rev. Lett. **110**, 130801 (2013).
- The sharpness of slope of the onset of the resonances is limited by a random walk in the magnetron mode, changing the magnetic field sampled.

$$
\frac{g_{\bar{p}}}{2} = 2.7928465 \ (23)
$$

H. Nagahama *et al.*, Nat. Commun. **8**, 14084 (2017)

Double-Penning Trap, Two-Particle Method

Measure spin flip probability as a function of drive frequency in the homogeneous magnetic field of the precision trap.

Spin-state resolution

To conclude in which quantum state the particle returns / leaves from precision trap, the double trap method requires high-fidelity **single spin-flip** resolution.

The cyclotron energy of the Lamor particle must be < 0.2 K, otherwise axial frequency fluctuations in the analysis trap are too large to resolve SSF.

$$
\frac{g_{\bar{p}}}{2} = 2.7928473441(42)
$$

C. Smorra *et al.*, Nature **550**, 371 (2017)

$$
\frac{g_p}{2} = 2.79284734462 \ (82)
$$

G. Schneider *et al.*, Science **358**, 1081 (2017)

- 1.5 p.p.b measurement of the antiproton g-factor.
- In agreement with the proton g-factor, measured to 0.3 p.p.b.

BASE collaboration

Slides provided by BASE spokesperson, Stefan Ulmer.

S. Ulmer **RIKEN**

T. Higuchi RIKEN / **Tokyo**

C. Smorra

S. Sellner RIKEN

M. Borchert

H. Nagahma RIKEN / Tokyo

J. Morgner **Hannover / RIKEN**

M. Wiesinger RIKEN/MPIK

MAX-PLANCK-GESELLSCHAFT

6151I Leibniz
Universität

K. Blaum, Y. Matsuda, C. Ospelkaus, W. Quint, J. Walz, Y. Yamazaki

A. Mooser RIKEN

G. Schneider U - Mainz

ALPHA Overview

The goal of the ALPHA experiment is to perform precision comparisons of the properties of antihydrogen with those of hydrogen.

Milestones:

- 2010: Trapped antihydrogen.
- 2010: Antihydrogen confinement for 1000s.
- 2011: Observation of microwave driven spin-flips.
- 2016: Observation of the 1S-2S transition.
- 2016: Measurement of the ground-state hyperfine splitting.
- 2017: Characterisation of the 1S-2S transition lineshape. M. Ahmadi et al., Nature

ALPHA-1 apparatus ALPHA-2 apparatus G. B Andresen et al., Nature **468**, 673 (2010).

G. B Andresen *et al.*, Nat. Phys. **7**, 558 (2011).

C. Amole *et al.*, Nature **483**, 439 (2012).

M. Ahmadi et al., Nature **541**, 506 (2017).

M. Ahmadi et al., Nature **548**, 66 (2017).

557, 71 (2018).

ALPHA-2 Apparatus

Antiproton "catching trap" Antihydrogen "atom trap"

- Slowly merge the particles (in 1s) by lowering the barrier between them.
- We typically mix 3 million positrons (at ~20K) with 90,000 antiprotons (at ~50K) forming around 50,000 antihydrogen atoms.

- We typically mix 3 million positrons (at ~20K) with 90,000 antiprotons (at ~50K) forming around 50,000 antihydrogen atoms.

- We typically mix 3 million positrons (at ~20K) with 90,000 antiprotons (at ~50K) forming around 50,000 antihydrogen atoms.

- We detect antihydrogen by ramping down the trap magnets to release the atoms.
- Image the annihilation products with a silicon vertex detector.
- Event topology allows us to distinguish antiproton annihilations from cosmic rays.
- Reconstruction efficiency: 0.69
- Background: 40mHz.

Antihydrogen accumulation

We can accumulate trapped antihydrogen through multiple mixing cycles, and have demonstrated trapping of >1000 atoms in this way.

ALPHA Collaboration, Nat. Comms. 8, 681 (2017).

1S-2S experiment

Measure the resonant frequency of the $1S_d-2S_d$ transition, and compare with the expected value in hydrogen (in the same trap environment).

We require:

- Knowledge of the magnetic field at the trap center.

- Sufficient laser intensity to excite the two-photon transition (at ~243nm).

1S-2S experiment procedure

Measure the resonant frequency of the $1S_d-2S_d$ transition, by:

- Exposing atoms to light for 300s, at a fixed frequency.

- Look for atoms leaving the trap during laser excitation period (appearance measurement).

- Remove atoms in the $1S_c$ state by driving positron spin-flip transition to the $1S_b$ (nontrappable) state.

- Turn off the trapping field, and measure how many atoms are still in the trap (disappearance measurement).

1S-2S lineshape

ALPHA Collaboration, Nature 557, 71 (2018).

CIPANP 2018, Daniel Maxwell - Swansea University

27

1S-2S lineshape

ALPHA Collaboration, Nature 557, 71 (2018).

CIPANP 2018, Daniel Maxwell - Swansea University

28

1S-2S lineshape

Measured resonance frequency is consistent with the expected resonance frequency in hydrogen, and therefore consistent with CPT invariance, to a precision of 2×10^{-12} .

Measurement of hyperfine splitting

- We inject microwaves at around 28GHz to drive positron spin-flip transitions $|c$ to $|b$, and $|d$ to $|a$. - Frequency difference between the transitions is the ground-state hyperfine splitting, independent of B-field.

20 Trappable low-field-seeking states $|c\rangle = |J \n\uparrow\rangle$ $|d\rangle = |\downarrow \Downarrow \rangle$ 15 10 Relative energy (GHz) $|c\rangle$ 5 -5 b) -10 la) -15 Untrappable high-field-seeking states $|b\rangle = | \uparrow \Uparrow \rangle$ $|a\rangle = | \uparrow | \downarrow \rangle$ -20 0.2 0.4 0.6 0.8 1.0 1.2 1.4 n Magnetic field, $B(T)$

- Due to the highly inhomogeneous magnetic field, the transition lineshapes are strongly broadened.

Ground-State Hyperfine Splitting

- Scan microwave frequency over each transition in 300kHz increments (4s pulses).

- Determine the ground-state hyperfine splitting from the separation of the onsets of the two transitions to be: **1420.4 ± 0.5 MHz**.

ALPHA Collaboration, Nature **548**, 66-69 (2017).

31

Outlook

- Laser cooling of antihydrogen.
- Improved precision measurement of the 1S-2S resonance frequency.
- Gravitational measurements on antihydrogen: the ALPHA collaboration is currently constructing a new experiment (ALPHA-g) where we will study the free-fall of antihydrogen in a vertical trap.

Matter-antimatter comparisons

G. Schneider *et al.*, Science **358**, 1081 (2017)

C. Smorra *et al.*, Nature **550**, 371 (2017)

(anti)hydrogen 1S-2S A. Matveev et al., Phys. Rev. Lett. **110**, 230801 (2013)

M. Ahmadi *et al.*, Nature **557**, 71 (2018)

(anti)hydrogen GS HFS N. F. Ramsey, Rev. Mod. Phys. **62**, 541 (1990)

M. Ahmadi *et al.*, Nature **548**, 66 (2017)

Thank you for your attention!

34 CIPANP 2018, Daniel Maxwell - Swansea University CIPANP 2018, Daniel Maxwell - Swansea University

Additional slides: 1S-2S

*r*_{*s*}(*D*) = *L*(*D*) / *L*(0) $r_s(D) = [S(-200kHz) - S(D)] / [S(-200kHz) - S(0)]$

Additional slides: Error budget 1S-2S

The estimated statistical and systematic errors (at 121 nm) are tabulated.

Additional slides: power dependence 1S-2S

Additional slides: Relative precision

