

Evgeny Epelbaum, RUB

CIPANP 2018, May 29 - June 3, Palm Springs, CA, USA

Current status of nuclear forces from chiral EFT

From QCD to nuclei

Chiral Effective Field Theory

Chiral Effective Field Theory

Chiral expansion of the nuclear forces [W-counting]

- Much more involved than just calculating Feynman diagrams...
- A similar program is being pursued for in chiral EFT with explicit $\Delta(1232)$ DOF

Electromagnetic currents

Chiral expansion of the electromagnetic current and charge operators

Axial currents Krebs, EE, Meißner, Annals Phys. 378 (2017) 317

Chiral expansion of the axial current and charge operators

A new generation of accurate & precise chiral NN potentials

- semi-local, coordinate-space-regularized up to N⁴LO EE, Krebs, Meißner, EPJA 51 (2015) 53; PRL 115 (2015) 122301
- semi-local, momentum-space-regularized up to N⁴LO⁺ Reinert, Krebs, EE, EPJA 54 (2018) 88
- nonlocal, momentum-space-regularized up to N⁴LO⁺
 Entem, Machleidt, Nosyk, PRC 96 (2017) 024004

Other chiral EFT interactions on the market:

local potentials up to N²LO [Gezerlis et al. '14]; minimally nonlocal N³LO potential including N²LO Δ (1232) contributions [Piarulli et al.'15]; N²LO potentials tuned to heavier nuclei [Ekström, Carlsson et al.] ...

The long and short of nuclear forces

The long and short of nuclear forces

 Short-range interactions have to be tuned to experimental data. In the isospin limit, one has according to NDA:

The long and short of nuclear forces

 Short-range interactions have to be tuned to experimental data. In the isospin limit, one has according to NDA:

• The long-range part of nuclear forces and currents is completely determined by the chiral symmetry of QCD + experimental information on πN scattering

Determination of πN LECs

Pion-nucleon scattering up to Q⁴ in heavy-baryon ChPT

Determination of πN LECs

Pion-nucleon scattering up to Q⁴ in heavy-baryon ChPT Fettes, Meißner '00; Krebs, Gasparyan, EE '12

Matching ChPT to πN Roy-Steiner equations

Hoferichter, Ruiz de Elvira, Kubis, Meißner, PRL 115 (2015) 092301

- χ expansion of the π N amplitude expected to converge best within the Mandelstam triangle
- Subthreshold coefficients (from RS analysis) provide a natural matching point to ChPT

$$ar{X} = \sum_{m,n} x_{mn} \,
u^{2m+k} t^n, \qquad X = \{A^{\pm}, \, B^{\pm}\}$$

Closer to the kinematics relevant for nuclear forces...

Determination of \pi N LECs

Pion-nucleon scattering up to Q⁴ in heavy-baryon ChPT

Relevant LECs (in GeV⁻ⁿ) extracted from π N scattering

	c_1	c_2	c_3	c_4	$ar{d_1}+ar{d_2}$	$ar{d}_3$	$ar{d}_5$	$ar{d}_{14}-ar{d}_{15}$	$ar{e}_{14}$	$ar{e}_{17}$	
$[Q^4]_{ m HB,NN},{ m GW}{ m PWA}$	-1.13	3.69	-5.51	3.71	5.57	-5.35	0.02	-10.26	1.75	-0.58	Krebs, Gasparyan, EE,
$[Q^4]_{ m HB,NN}, m KH$ PWA	-0.75	3.49	-4.77	3.34	6.21	-6.83	0.78	-12.02	1.52	-0.37 .	PRC85 (12) 054006
$[Q^4]_{\mathrm{HB,NN}},\mathrm{Roy-Steiner}$	-1.10	3.57	-5.54	4.17	6.18	-8.91	0.86	-12.18	1.18	-0.18	Hoferichter et al., PRL 115 (15) 092301
$[Q^4]_{\rm covariant},{\rm data}$	-0.82	3.56	-4.59	3.44	5.43	-4.58	-0.40	-9.94	-0.63	-0.90	Siemens et al., PRC94 (16) 014620

Notice:

- some LECs show sizable correlations (especially c_1 and c_3)...
- KH PWA and Roy-Steiner LECs lead to comparable results in the NN sector

Determination of \pi N LECs

Pion-nucleon scattering up to Q⁴ in heavy-baryon ChPT

Relevant LECs (in GeV⁻ⁿ) extracted from πN scattering

	c_1	c_2	C ₃	c_4	$ar{d}_1 + ar{d}_2$	$ar{d}_3$	$ar{d}_5$	$ar{d}_{14}-ar{d}_{15}$	$ar{e}_{14}$	\bar{e}_{17}	
$[Q^4]_{ m HB,NN},{ m GW}$ PWA	-1.13	3.69	-5.51	3.71	5.57	-5.35	0.02	-10.26	1.75	-0.58	Krebs, Gasparyan, EE,
$[Q^4]_{ m HB,NN}, m KH$ PWA	-0.75	3.49	-4.77	3.34	6.21	-6.83	0.78	-12.02	1.52	-0.37 .	PRC85 (12) 054006
$[Q^4]_{\rm HB, NN}, { m Roy-Steiner}$	-1.10	3.57	-5.54	4.17	6.18	-8.91	0.86	-12.18	1.18	-0.18	Hoterichter et al., PRL 115 (15) 092301
$[Q^4]_{\rm covariant},{\rm data}$	-0.82	3.56	-4.59	3.44	5.43	-4.58	-0.40	-9.94	-0.63	-0.90	Siemens et al., PRC94 (16) 014620

Notice:

- some LECs show sizable correlations (especially c_1 and c_3)...
- KH PWA and Roy-Steiner LECs lead to comparable results in the NN sector

With the LECs taken from πN , the long-range NN force is completely fixed (parameter-free)

The cutoff Λ has to be kept finite, $\Lambda \sim \Lambda_b$ (unless all counterterms are taken into account in the calculations) [Lepage '97; EE, Gegelia '09]. In practice, low values of Λ are preferred:

- many-body methods require soft interactions,
- spurious deeply-bound states for $\Lambda > \Lambda^{crit}$ make calculations for $\Lambda > 3$ unfeasible...

 \rightarrow it is crucial to employ a regulator that minimizes finite- Λ artifacts!

The cutoff Λ has to be kept finite, $\Lambda \sim \Lambda_b$ (unless all counterterms are taken into account in the calculations) [Lepage '97; EE, Gegelia '09]. In practice, low values of Λ are preferred:

- many-body methods require soft interactions,
- spurious deeply-bound states for $\Lambda > \Lambda^{crit}$ make calculations for A > 3 unfeasible...

 \rightarrow it is crucial to employ a regulator that minimizes finite- Λ artifacts!

Nonlocal:
$$V_{1\pi}^{\text{reg}} \propto \frac{e^{-\frac{p'^4+p^4}{\Lambda^4}}}{\vec{q}^2 + M_{\pi}^2} \longrightarrow \frac{1}{\vec{q}^2 + M_{\pi}^2} \underbrace{\left(1 - \frac{p'^4 + p^4}{\Lambda^4} + \mathcal{O}(\Lambda^{-8})\right)}_{\text{affect long-range interactions...}} \overset{\text{EE, Glöckle, Meißner '04;}}{\underset{\text{Entem, Machleidt '03;}}{\underset{\text{Entem, Machleidt, Nosyk '17; ...}}}}$$

The cutoff Λ has to be kept finite, $\Lambda \sim \Lambda_b$ (unless all counterterms are taken into account in the calculations) [Lepage '97; EE, Gegelia '09]. In practice, low values of Λ are preferred:

- many-body methods require soft interactions,
- spurious deeply-bound states for $\Lambda > \Lambda^{crit}$ make calculations for A > 3 unfeasible...

 \rightarrow it is crucial to employ a regulator that minimizes finite- Λ artifacts!

Nonlocal:
$$V_{1\pi}^{\text{reg}} \propto \frac{e^{-\frac{p'^4+p^4}{\Lambda^4}}}{\vec{q}\,^2+M_{\pi}^2} \longrightarrow \frac{1}{\vec{q}\,^2+M_{\pi}^2} \underbrace{\left(1-\frac{p'^4+p^4}{\Lambda^4}+\mathcal{O}(\Lambda^{-8})\right)}_{\text{affect long-range interactions...}} \overset{\text{EE, Glöckle, Meißner '04;}}{\underset{\text{Entem, Machleidt '03;}}{\underset{\text{Entem, Machleidt, Nosyk '17; ...}}}$$

$$\begin{aligned} & \text{Local: } V_{1\pi}^{\text{reg}} \propto \frac{e^{-\frac{q^2 + M_{\pi}^2}{\Lambda^2}}}{\vec{q}^2 + M_{\pi}^2} \longrightarrow \frac{1}{\vec{q}^2 + M_{\pi}^2} \left(1 + \text{short-range terms}\right) & \text{Reinert, Krebs, EE '18;} \\ & \text{Impose Rijken]} & \text{ does not affect long-range physics at any order in 1/\Lambda^2-expansion} \\ & - \text{ Application to } 2\pi \text{ exchange does not require re-calculating the corresponding diagrams:} \\ & V(q) = \frac{2}{\pi} \int_{2M_{\pi}}^{\infty} \mu \, d\mu \frac{\rho(\mu)}{q^2 + \mu^2} + \dots \xrightarrow{\text{reg.}} V_{\Lambda}(q) = e^{-\frac{q^2}{2\Lambda^2}} \frac{2}{\pi} \int_{2M_{\pi}}^{\infty} \mu \, d\mu \frac{\rho(\mu)}{q^2 + \mu^2} e^{-\frac{\mu^2}{2\Lambda^2}} + \dots \\ & \text{ polynomial in } q^2, M_{\pi} \end{aligned}$$

Regularized 2π -exchange potential: $W_{C,\Lambda}(q) = e^{-\frac{q^2}{2\Lambda^2}} \frac{2}{\pi} \int_{2M^2}^{\infty} \mu \, d\mu \, \frac{\rho(\mu)}{q^2 + \mu^2} e^{-\frac{\mu^2}{2\Lambda^2}}$

Various regularization approaches

Does it matter in practice?

NN data analysis

P. Reinert, H. Krebs, EE, EPJA 54 (2018) 88

- To fix NN contact interactions, use scattering data together with B_d = 2.224575(9) MeV and b_{np} = 3.7405(9) fm.
- Since 1950-es, about 3000 proton-proton + 5000 neutron-proton scattering data below 350 MeV have been measured.
- However, certain data are mutually incompatible within errors and have to be rejected.
 2013 Granada database [Navarro-Perez et al., PRC 88 (2013) 064002], rejection rate: 31% np, 11% pp: 2158 proton-proton + 2697 neutron-proton data below Elab = 300 MeV

P. Reinert, H. Krebs, EE, EPJA 54 (2018) 88

- Significant correlations within the ¹S₀ and ³S₁-³D₁ channels but little correlations otherwise. Still, all LECs can be accurately determined...
- Natural units for the LECs according to NDA:

$$| ilde{C}_i| \sim rac{4\pi}{F_\pi^2}, \qquad |C_i| \sim rac{4\pi}{F_\pi^2 \Lambda_b^2}, \qquad |D_i| \sim rac{4\pi}{F_\pi^2 \Lambda_b^4}, \qquad |E_i| \sim rac{4\pi}{F_\pi^2 \Lambda_b^6}$$

Assuming $\Lambda_b = 600 \text{ MeV}$ [EE, Krebs, Meißner EPJA 51 (15) 53; Furnstahl, Klco, Phillips, Wesolowski, PRC 92 (15) 024005], the LECs come out of a natural size.

Absolute values of the LECs in natural units

P. Reinert, H. Krebs, EE, EPJA 54 (2018) 88

- Significant correlations within the ¹S₀ and ³S₁-³D₁ channels but little correlations otherwise. Still, all LECs can be accurately determined...
- Natural units for the LECs according to NDA:

$$| ilde{C}_i| \sim rac{4\pi}{F_\pi^2}, \qquad |C_i| \sim rac{4\pi}{F_\pi^2 \Lambda_b^2}, \qquad |D_i| \sim rac{4\pi}{F_\pi^2 \Lambda_b^4}, \qquad |E_i| \sim rac{4\pi}{F_\pi^2 \Lambda_b^6}$$

Assuming $\Lambda_b = 600 \text{ MeV}$ [EE, Krebs, Meißner EPJA 51 (15) 53; Furnstahl, Klco, Phillips, Wesolowski, PRC 92 (15) 024005], the LECs come out of a natural size.

Absolute values of the LECs in natural units

State-of-the-art NN potentials

P. Reinert, H. Krebs, EE, EPJA 54 (2018) 88

- N⁴LO⁺ yields currently the best description of the 2013 Granada database
- 40% less parameters (27+1) compared to high-precision potentials
- Clear evidence of the parameter-free chiral 2π exchange

State-of-the-art NN potentials

P. Reinert, H. Krebs, EE, EPJA 54 (2018) 88

neutron-proton data

proton-proton data

Error analysis

P. Reinert, H. Krebs, EE, EPJA 54 (2018) 88

Careful error analysis: (i) truncation error [EE, Krebs, Meißner EPJ A51 (15)], (ii) statistical uncertainty (NN LECs), (iii) uncertainty due to π N LECs and (iv) choice of the energy range in the fits.

Error analysis

P. Reinert, H. Krebs, EE, EPJA 54 (2018) 88

Careful error analysis: (i) truncation error [EE, Krebs, Meißner EPJ A51 (15)], (ii) statistical uncertainty (NN LECs), (iii) uncertainty due to π N LECs and (iv) choice of the energy range in the fits.

Example: deuteron asymptotic normalizations (relevant for nuclear astrophysics)

Our determination:

Exp: $A_S = 0.8781(44) \, {
m fm}^{-1/2}, \quad \eta = 0.0256(4)$ Borbely et al. '85 Rodning, Knutson '90

Nijmegen PWA [errors are "educated guesses"] Stoks et al. '95 $A_S = 0.8845(8) \text{ fm}^{-1/2}, \quad \eta = 0.0256(4)$

Granada PWA [errors purely statistical] Navarro Perez et al. '13 $A_S = 0.8829(4)~{
m fm}^{-1/2}, ~~\eta = 0.0249(1)$

- N²LO: tree-level graphs, 2 new LECs van Kolck '94; EE et al '02
- N³LO: leading 1 loop, parameter-free Ishikawa, Robilotta '08; Bernard, EE, Krebs, Meißner '08, '11
- N⁴LO: full 1 loop, almost completely worked out, several new LECs Girlanda, Kievski, Viviani '11; Krebs, Gasparyan, EE '12,'13; EE, Gasparyan, Krebs, Schat '14

N²LO: tree-level graphs, 2 new LECs van Kolck '94; EE et al '02

N²LO: tree-level graphs, 2 new LECs van Kolck '94; EE et al '02

Determination of the LECs c_D, c_E

- Triton BE (c_D - c_E correlation)

UNIVERSITÄT

Explore various possibilities and let theory and/or data decide...

National Laboratory

universitätbonr

N²LO: tree-level graphs, 2 new LECs van Kolck '94; EE et al '02

 \sim 1

 $\langle p', \alpha$

National Laboratory

Determination of the LECs c_D, c_E

- Triton BE (c_D - c_E correlation)
- Explore various possibilities and let theory and/or data decide...

LENPIC: Low Energy Nuclear Physics International Collaboration

UNIVERSITÄT

RUB

universitätbonr

Nd total cross section at 70 MeV (preliminary)

Light nuclei (preliminary)

Summary and outlook

Nuclear Hamiltonian:

- derivation of contributions up to N³LO completed already in 2011; derivation of N⁴LO corrections done for V_{2N} and almost done for V_{3N} (new LECs...) and V_{4N}
- accurate & precise 2N potentials at N⁴LO⁺ are available,
- promising results for few-N systems based on 2NF + 3NF@N²LO [LENPIC]

Electroweak current operators:

- have been worked out completely to N³LO
- some πN LECs in 1π axial charge at N³LO are unknown... [lattice QCD? v-induced π -production? resonance saturation? large-N_c?...]

Work in progress:

- regularization of 3NF & currents beyond N²LO (nontrivial to maintain χ -symm!)

Next steps:

- Precision tests of the theory for ³H β decay & μ capture (validation)
- Extension to other processes, heavier nuclei, N⁴LO, explicit Δ 's, ...