

van swinderen institute for particle physics and gravity

Lepton Universality Violation

Gerco Onderwater

on behalf of the LHCb collaboration

LHCb

CIPANP2018, Palm Springs, CA, USA, 29 May – 3 June 2018

5/30/18 2

Outline

Introduction

EM interaction

NC weak interaction

CC weak interaction

Conclusion

5/30/18 | 3

5/30/18 4

Discovery of leptons

Electron found by **Thomson**, **Townsend**, **Wilson** (1896)

Muon found by **Kunze** (1933), identified by **Neddermeyer** & **Anderson** (1937)

Mass between electron and proton

→ "mesotron" → Yukawa's particle? NO!

Rabi*: "Who ordered that?!"

What is it?

"The other double trace of the same type (figure 5) shows closely together the thin trace of an electron of 37 MeV, and a much more strongly ionizing positive particle whith a much larger bending radius. The nature of this particle is unknown; for a proton it does not ionize enough and for a positive electron the ionization is too strong. The present double trace is probably a segment from a "shower" of particles as they have been observed by Blackett and Occhialini, i.e. the result of a

psion".

Kunze, P., Z. Phys. 83, (1933) 1

Note on the Nature of Cosmic-Ray Particles

SETH H. NEDDERMEYER AND CARL D. ANDERSON California Institute of Technology, Pasadena, California (Received March 30, 1937)

5/30/18 5

Lepton Numbers

Konopinski & Mahmoud (1953) propose conserved lepton number **L** to explain missing decays The Universal Fermi Inte

Allows $\mu \rightarrow e + \gamma \rightarrow$ not observed ...

The Universal Fermi Interaction*

E. J. KONOPINSKI AND H. M. MAHMOUD Physics Department, Indiana University, Bloomington, Indiana (Received July 24, 1953)

Pontecorvo (1959) : L and L different

 $\mathbf{v}_{\ell} + \mathbf{n} \rightarrow \ell^- + \mathbf{p}$

Muon neutrino discovered in 1962 by Lederman, Schwartz, & Steinberger, later \top Perl et al. (1975), and v₁ DONUT (2000)

 $\mathbf{L} = \mathbf{L}_{\mathbf{e}} + \mathbf{L}_{\mu} + \mathbf{L}_{\tau}$

Electron, muon, tau differ by mass, otherwise identical

 $\begin{array}{c|c} \nu_l & q_u \\ l^- & q_d \end{array} \right|$

5/30/18 6

Lepton Flavor Universality

3 families \rightarrow many arbitrary SM variables

→ rich phenomenology (CPV, flavor oscillations, ...)

Same gauge interactions for all flavors → UNIVERSALITY

no fundamental reason for universality only difference: mass & flavor quantum number everything else determined by these two → precise predictions

Understanding flavor might be key to understand nature Leptons: no internal structure → easier analysis & theory

Charged Lepton Properties

Particle	Mass [MeV]	Lifetime	Main Decay
е	0.5109989461(31)	>6.6x10 ²⁸ yr	_
μ	105.6583745(24)	2.1969811(22) µs	e ⁻ v _e v _µ
т	1776.86(12)	290.3(5) fs	$ \begin{array}{c} \mu^{-} \overline{\mathbf{v}}_{\mu} \mathbf{v}_{\tau} (17\%) \\ e^{-} \overline{\mathbf{v}}_{e} \mathbf{v}_{\tau} (18\%) \\ \pi^{-} \overline{\mathbf{v}}_{\tau} (11\%) \\ \pi^{-} \pi^{+} \pi^{-} \overline{\mathbf{v}}_{\tau} (9\%) \end{array} $

How precisely do we know that the underlying interactions are identical for three lepton generation?

Gerco Onderwater, CIPANP2018

Particle Data Group

5/30/18 | 8

5/30/18 | 9

Lepton-photon coupling

General description involves three form factors

$$T[l\bar{l}\gamma^*] = e \,\varepsilon_{\mu}(q) \,\bar{l} \left[F_1(q^2)\gamma^{\mu} + i \frac{F_2(q^2)}{2m_l} \sigma^{\mu\nu} q_{\nu} + \frac{F_3(q^2)}{2m_l} \sigma^{\mu\nu} \gamma_5 q_{\nu} \right] l$$

@ q² = 0 Q aMDM EDM

Some explored avenues

- 1. muonium $M(e^{-}\mu^{+})$ 1s-2s
- 2. ^eH vs ^µH spectroscopy
- 3. MDM (e, µ)
- 4. EDM (**e**, **µ**)
- 5. $e^+e^- \rightarrow \gamma \rightarrow \ell^+\ell^-(e, \mu, \tau)$
- 6. quarkonium decay $\mathbf{q}\overline{\mathbf{q}} \rightarrow \mathbf{\gamma} \rightarrow \ell^+ \ell^- (\mathbf{e}, \mathbf{\mu}, (\mathbf{T}))$

 $2^{\prime}P_{3/2}$ 10922 MHz 558 MHz 1047 MH 187 MHz $2^{2}P_{1/2}$ 2 455 THz

K. Jungmann

5/30/18 | 10

antimuon

*given m_u/m_e

F=0

F₂: Anomalous Magnetic Moment

Tests Lepton Universality @ ~10^{-6*} level; 3σ discrepancy *assuming theory (QCD) understood

See Wed/Thu parallel sessions

Gerco Onderwater, CIPANP2018

ge: doi.org/10.1103/PhysRevLett.100.120801 gmu: doi.org://10.1103/PhysRevD.73.072003 "The Anomalous Magnetic Moment of the Muon", F. Jegerlehner, Springer (2017) 133Cs :doi.org/10.1126/science.aap7706

Dimuon production @ LHCb

Gerco Onderwater, CIPANP2018

CERN-LHCb-CONF-2016-005

Particle Data Group

~theory free Consistent with Lepton Universality @ ~10⁻² level

φ (1020)	2.96(3)·10 ⁻⁴	2.87(2)·10 ⁻⁴	_
J/Ψ	5.97(3)·10 ⁻²	5.96(3)·10 ⁻²	_ *phas
Ψ(2S)	7.89(2)·10 ⁻³	7.9(9)·10 ⁻³	3.1(4)·10 ^{-3*} space
Y(1S)	2.38(11)·10 ⁻²	2.48(5)·10 ⁻²	2.60(10).10-2
Y(2S)	1.91(16)·10 ⁻²	1.93(17)·10 ⁻²	2.00(21).10-2
Y(3S)	2.18(20).10-2	2.18(21).10-2	2.29(30)·10 ⁻²

μ

4.55(28).10-5

Vector Meson Branching Ratios

e

 $4.72(5) \cdot 10^{-5}$

university of groningen faculty of science and engineering

ρ^o(770)

5/30/18 | 13

Т

5/30/18 | 14

Lepton-Z⁰ coupling

Leptons w/ equal charge have identical coupling to Z boson

$$\mathcal{L}_{\rm NC}^Z = \frac{g}{2\cos\theta_W} Z_\mu \sum_l \bar{l}\gamma^\mu (v_l - a_l\gamma_5)l$$

with effective **vector** and **axial-vector** couplings

Some explorations (e, µ, т, v)

- Z-production & decay @ LEP, SLC, LHC, ...
- 1. partial decay widths
- 2. forward-backward asymmetry $A_{\mbox{\tiny FB}}$
- 3. polarization asymmetry A_{LR}

Z^o line-shape parameters

	е	μ	Т	V
Br	0.03363(4)	0.03366(7)	0.03370(8)	$\frac{6}{9000} = 100 \text{ LHCb } \sqrt{s} = 8 \text{ TeV}$
A _{LR}	0.1515(19)	0.142(15)	0.143(4)	itip 4000
A _{FB}	0.0145(25)	0.0169(13)	0.0188(17)	
$\mathbf{g}_{\mathbf{v}}$	-0.03817(47)	-0.0367(23)	-0.0366(10)	⁶⁰ 80 100 M _{μμ} [GeV
g _A	-0.50111(35)	-0.50120(54)	-0.50204(64)	0.502(17)**

* from $v_{\mu}e$ scattering

~theory free

Consistent with Lepton Universality @ ~10⁻³ level

Gerco Onderwater, CIPANP2018

Particle Data Group doi.org/10.1007/JHEP01(2016)155

 W^{-}

5/30/18 | 18

Lepton-W[±] coupling

Charged current interaction governed by universal coupling g

$$\mathcal{L}_{\rm CC} = \frac{g}{2\sqrt{2}} \left\{ W^{\dagger}_{\mu} \left[\sum_{ij} \bar{u}_i \gamma^{\mu} (1-\gamma_5) V_{ij} d_j + \sum_l \bar{\nu}_l \gamma^{\mu} (1-\gamma_5) l \right] + \text{h.c.} \right\}$$

- 1. W-decay partial decay widths
- 2. lepton decay $\ell \rightarrow v_{\ell} W(\rightarrow \ell' \overline{v}_{\ell'})$
- 3. (semi-)leptonic meson decay $\mathbf{M} \rightarrow (\mathbf{M'}) \mathbf{W} (\rightarrow \ell' \overline{\mathbf{v}}_{r'})$

V_e

5/30/18 | 19

W[±] branching fractions

produced in pairs at e+e- colliders or indirectly at hadron colliders missing neutrinos complicate analysis

	е	μ	т
Br	0.1071(16)	0.1063(15)	0.1138(21)

Universality tested @ ~10⁻² level

Br(**τ**) about 3σ above average of Br(**e**) & Br(**μ**)

Gerco Onderwater, CIPANP2018

Particle Data Group

5/30/18 | 20

Muon Decay

Muon decay

simplest flavor-changing process $\mu \rightarrow v_{\mu} \in \overline{v_{e}}$

Determines weak interaction strength

1/τ_μ ≈ $G_F^2 m_\mu^5$ / 192π³ ↓ $G_F = \sqrt{2 \cdot g_e \cdot g_\mu} / 8M_w^2$

Gerco Onderwater, CIPANP2018

doi.org/10.1016/j.nuclphysbps.2012.02.048

Branching fractions depend on coupling constants : g_{e} , g_{μ} , g_{τ} , $g_{u,d}$

Br(e)	= Br(µ)/0.972564(10)	= τ _τ /1632.1(14) fs
0.1782(4)	0.1788(4)	0.1779(3)

Consistent with Universality @ 3.10⁻³ level

	е	μ
Br	0.1782(4)	0.1739(4)

Gerco Onderwater, CIPANP2018

arXiv:hep-ph/9701263 Particle Data Group

Meson decay

Two basic processes: leptonic and semi-leptonic decay

See PEN in Tuesday parallel session

Semi-leptonic meson decay

Tree level, $b \rightarrow c \ell v$

abundant well known in SM

possible new physics in 3rd gen.

Loop level, b → s ł ł FCNC forbidden at tree-level in SM sensitive to new physics in loops

Approach : determine ratio of branching fractionsexperimentally clean \rightarrow many systematics canceltheoretically clean \rightarrow many QCD effects cancel

5/30/18 | 24

5/30/18 | 26

Successful data taking

LHCb Integrated Recorded Luminosity in pp, 2010-2018

Gerco Onderwater, CIPANP2018

university of

groningen

JHEP 1803 (2018) 078 $B^0_{(s)} \rightarrow e\mu$ LFV $\overline{B}{}^{0} \rightarrow D^{*+} TV_{T} / \mu V_{u}$ PRD 97, 072013 (2018) LNU $B^{0} \rightarrow K^{0^{*}} \mu \mu \ / \ ee$ JHEP 08 (2017) 055 LNU PLB 754 (2016) 167 $D^0 \rightarrow e\mu$ LFV $\overline{B}{}^{0} \rightarrow D^{*+} \overline{TV}_{T} / \mu \overline{V}_{\mu}$ PRL 115, 111803 (2015) LNU JHEP 02 (2015) 121 LFV $T \rightarrow \mu \mu \mu$ $B^+ \rightarrow K^+ \mu \mu / ee$ PRL 113, 151601 (2014) LNU PRL 112, 131802 (2014) $B^- \rightarrow \pi^+ \mu^- \mu^-$ LNV PLB 724 (2013) 36 BLNV $T^- \rightarrow p\mu^-\mu^-$ PLB 724 (2013) 203 $D^+ \rightarrow \pi^- \mu^+ \mu^+$ LNV

faculty of science

and engineering

Recent LHCb results – Run-I, 3 fb⁻¹

van swinderen institute for

particle physics and gravity

5/30/18 27

5/30/18 | 28

Cannot reconstruct B mass because of missing v's

Gerco Onderwater, CIPANP2018

Nature 546, 227–233 (2017) PRL 115, 111803 (2015)

Maximum likelihood fitting

Muon Energy

Fit data using simulated kinematic distributions

PRL 115, 111803 (2015)

5/30/18 | 32

$b \rightarrow s\ell^+\ell^- (\ell = e, \mu)$

requires FCNC \rightarrow rates suppressed

Ratio close to unity in SM
$$R_{H} = \frac{\int \frac{d\Gamma(B \rightarrow H \mu^{+} \mu^{-})}{dq^{2}} dq^{2}}{\int \frac{d\Gamma(B \rightarrow H e^{+} e^{-})}{dq^{2}} dq^{2}}$$

for range of squared di-lepton invariant mass (q²)

Ratio sensitive to possible new particles

[\]LNU-free

$B^{o} \rightarrow K^{*o}\ell^{+}\ell^{-}(\ell=e,\mu)$

Measured as double ratio → **many systematics reduced**

$$R_{K^{*0}} = \frac{\mathcal{B}(B^0 \to K^{*0} \mu^+ \mu^-)}{\mathcal{B}(B^0 \to K^{*0} J/\psi (\to \mu^+ \mu^-))} / \frac{\mathcal{B}(B^0 \to K^{*0} e^+ e^-)}{\mathcal{B}(B^0 \to K^{*0} J/\psi (\to e^+ e^-))}$$

 K^{*0} from $K^{*0} \rightarrow K^{+} \pi^{-}$

 $q^{2}=m(\ell^{+}\ell^{-}) \text{ ranges used}$ $B^{0} \rightarrow K^{*0} \ell^{+}\ell^{-} \qquad [0.045-1.1] \text{ incl. } \phi(1020)$ $B^{0} \rightarrow K^{*0} \ell^{+}\ell^{-} \qquad [1.1-6]$ $B^{0} \rightarrow K^{*0} J/\psi(\rightarrow \ell^{+}\ell^{-}) \qquad [6-11]$

Gerco Onderwater, CIPANP2018

JHEP 08 (2017) 055

$B^{o} \rightarrow K^{*o}\ell^{+}\ell^{-} (\ell = e, \mu)$

Gerco Onderwater, CIPANP2018

JHEP 08 (2017) 055

Violates Universality @ 30% level by combined $\sim 4\sigma$

Gerco Onderwater, CIPANP2018

JHEP 08 (2017) 055 doi.org/10.1103/PhysRevLett.113.151601

5/30/18 | 37

5/30/18 | 38

Need for new physics?

Required: $g_e \neq g_\mu \neq g_\tau$

New vector Boson W'[±], m_{w'}>m_w

constrained by $W' \rightarrow tb$, precision μ , τ measurements

Charged Higgs w/ S=0

affects angular distributions

Leptoquarks

unified description of flavors, allows quark-lepton transitions

Model `independent' via EFT

link various measurements, guide fundamental theories

Gerco Onderwater, CIPANP2018

Nature 546, 227–233 (2017) arXiv:1805.05399

5/30/18 | 39

What does it all mean?

Lepton Universality is tested in various ways

EM coupling @ $10^{-9} (Q_{e\mu}) \& 10^{-6} (a_{e\mu}) : 2.6\sigma$ tension

- **NC** couplings @ 10^{-3} (e,µ,T) : consistent
- **CC** coupling tested @ 10⁻³ (**e**,**µ**), 10⁻² (**T**)
 - $\begin{array}{ll} \mathsf{RD}(*) \ (\mathbf{e}, \boldsymbol{\mu}, \boldsymbol{\tau}) > \text{ prediction} & : \mathbf{4.1\sigma \ tension} \\ \mathsf{RK}(*) \ (\mathbf{e}, \boldsymbol{\mu}) < \text{ prediction} & : \sim \mathbf{4\sigma \ tension} \end{array}$
- Linked to many other observables: LFV, direct searches, ...
- Several theoretical speculations about NP interpretation

Look for progress in the (near) future!

Thank you for your attention!

5/30/18 | 41

Leptonic meson decay

Branching ratios strongly affected by helicity suppression \rightarrow universality not obvious, $\Gamma_{\ell} \sim g_{\ell}^2 \cdot m_M \cdot [m_{\ell} (1 - (m_{\ell}/m_M)^2)]^2$

	е	μ	т
п+	$1.230(4) \cdot 10^{-4}$	99.98770(4)%	—
K ⁺	$1.582(7) \cdot 10^{-5}$	63.58(11)%	—
$\mathbf{D_s}^+$	<8.3·10 ⁻⁵	5.50(23)·10 ⁻³	5.48(23)%
B⁻	<9.8.10-7	<1.0.10-6	$1.06(19) \cdot 10^{-4}$

Consistent with Universality @ 3.10⁻³ level

5/30/18 | 42

B → **D**^(*)*ℓ*⁻**v**_ℓ (*ℓ*=**e**,**µ**,**т**) **@ BaBar & Belle Tau** over electron or muon : $\mathcal{R}(D) = \frac{\mathcal{B}(\bar{B} \to D\tau^- \bar{\nu}_{\tau})}{\mathcal{B}(\bar{B} \to D\ell^- \bar{\nu}_{\ell})}$ Combine B⁰ → D⁺ ... & B⁺ → D⁰ ... (spectator differs) Combine electron & muon (both light)

R(D) : 2.0 σ @ BaBar E: 0.440 ± 0.058 ± 0.042 T: 0.297 ± 0.017

 $R(D^*)$: 2.7 σ @ BaBar E: 0.332 ± 0.024 ± 0.018

T: 0.252 ± 0.003

R(D*): 1.6σ @ Belle E: 0.302 ± 0.030 ± 0.011

T: 0.252 ± 0.003

Gerco Onderwater, CIPANP2018

PRD 88, 072012 (2013) PRD 94, 072007 (2016)

5/30/18 | 43

 $B \rightarrow K^{(*)}\ell^+\ell^- (\ell = e, \mu)$

university of

groningen

Many options

- $\mathsf{B}^{0} \to \mathsf{K}^{0}\ell^{+}\ell^{-}$
- $\mathsf{B}^{0} \rightarrow \mathsf{K}^{*0} \ell^{+} \ell^{-}$
- $B^{\pm} \rightarrow K^{\pm}\ell^{+}\ell^{-}$
- $\mathsf{B}^{\pm} \rightarrow \mathsf{K}^{*\pm} \ell^+ \ell^-$

Previous from BaBar, Belle, LHCbBaBar $R_{\kappa} = 1.00 \pm 0.29$ BaBar $R_{\kappa} = 1.03 \pm 0.29$ Belle $R_{\kappa} = 1.03 \pm 0.20$ LHCb $R_{\kappa+} = 0.75 \pm 0.10 \rightarrow 2.6\sigma$

Babar: doi.org/10.1103/PhysRevD.86.032012 Belle: doi.org/10.1103/PhysRevLett.103.171801 LHCb: doi.org/10.1103/PhysRevLett.113.151601