

^E THE RHIC BEAM ENERGY SCAN PHASE II: PHYSICS AND UPGRADES David Tlusty (Rice University)

Outline

- > QCD phase diagram and RHIC Beam Energy Scan
- observables used to explore the phase diagram
- ➤ facility upgrades
- ► detector upgrades
- ► fixed target

DEST hase in thysics cases for the C

QCD PHASE TRANSITION AT BES ENERGIES

- ➤ Critical point divergence of the correlation length ⇒ nonmonotonic behavior of higher moments of conserved quantities
 - experimentally, one can measure mean M, variance σ², skewness S, and kurtosis κ of the event-by-event net-particle distributions (particle multiplicity minus antiparticle multiplicity, e.g. net-proton, net-kaon, net-charge)
- ► First-order phase transition changes in the equation of state (EoS) due to attractive force (softest point) \Rightarrow non-monotonic behavior of directed flow slope at mid-rapidity $(dv_1/dy|_{y=0})$

DIRECTED FLOW

- EoS with a 1st order phase transition exhibits a very pronounced Youffee Provint at large chemical potentials [Y. Nara et al., PRC 94 034906 (2016)]
- > directed flow v_1 is sensitive to the EoS in the early stage
- non-monotonic dependence
 - softening (crossover or 1st order phase transition)
 - ► geometry (tilted ellipsoid px) ansi \mathcal{C}_{OS} (vant at $\sqrt{s_{NN}} \approx 27 \text{ GeV}$)

David Tlusty

DIRECTED FLOW FROM BES-I

- ➤ net baryons show hints of a minimum and double-sign change ⇒ indicative of a softening equation of state
- ► fine centrality binning (by 5%) possible in BES-II
 - STAR detector upgrade (reduction of systematic errors) and RHIC luminosity increase (reduction of statistical uncertainties)

► Dynamic della 666 abovi veractive of the delta della del

LOW-ENERGY RHIC ELECTRON COOLER (LEREC)

- improve luminosity for low energy beams:
 - ► 2019 (without LEReC)
 - > $3x \text{ for } \sqrt{s_{NN}} = 14.5 \text{ and } 19.6$ GeV
 - ► 2020 (with LEReC)
 - $4x \text{ for } \sqrt{s_{NN}} = 7.7, 9.1, \text{ and}$ 11.5 GeV

STAR DETECTOR UPGRADES FOR BES-II

iTPC upgrade

Continuous pad rows Replace all inner TPC sectors

|η|<1.5 (was 1.0)

p_T >60 MeV/c (was 150MeV/c)

Better dE/dx resolution Better momentum resolution

Fully operational in 2019

EPD upgrade

Replace Beam Beam Counter

<mark>2.1<|η|<</mark>5.1

Better trigger & b/g reduction

Greatly improved Event Plane info (esp. 1st-order EP)

Fully operational in 2018

CIPANP 2018

eTOF upgrade

Add CBM TOF modules and electronics (FAIR Phase 0)

-1.6<η<-1.1

Extend forward PID capability

Allows higher energy range of Fixed Target program

Fully operational in 2019

INNER TIME PROJECTION CHAMBER (ITPC)

make possible a systematic study of the dielectron continuum bellow 19.6 GeV

one sector has been installed and operated this year

 make possible to measure directed flow in forward rapidity

ENDCAP TIME OF FLIGHT (ETOF)

- extends particle TOF
 particle identification
 (PID) in 1.1<η<1.6
- essential for PID at midrapidity in fixed-target mode

- antiprotons produced more at midrapidity
- ➤ added coverage by eTOF will enhance the fluctuation signal ⇒ clearer and more significant indication of critical behavior

EVENT PLANE DETECTOR (EPD)

FIXED TARGET PROGRAM AT RHIC

► successful test run in 2015 $\sqrt{s_{NN}}$ = 4.5 GeV AuAu, paper in preparation

- ► STAR is taking data at 3.85 GeV this week
- ► fixed-target is expected to fill the gap between RHIC and SIS energies
 - ► HADES vs STAR: different acceptances make the comparison non-trivial

FIXED TARGET PROGRAM AT RHIC

- ► successful test run in 2015 $\sqrt{s_{NN}}$ = 4.5 GeV AuAu, paper in preparation
- ► STAR is taking data at 3.85 GeV this week
- ► fixed-target is expected to fill the gap between RHIC and SIS energies
 - ► HADES vs STAR: different acceptances make the comparison non-trivial

SUMMARY:

- BES-I results hint critical behavior
- many critical measurements require larger statistics and acceptance
- BES-II provides a well defined plan for a targeted study of a phase transition and localization of the critical point
 - presented detector upgrades will reduce systematic uncertainties and extend kinematical and PID range
 - RHIC facility upgrades will increase luminosity
 - ► fixed-target program will extend μ_B range
- Iooking forward to new precision data from RHIC

SUMMARY:

- BES-I results hint critical behavior
- many critical measurements require larger statistics and acceptance
- BES-II provides a well defined plan for a targeted study of a phase transition and localization of the critical point
 - presented detector upgrades will reduce systematic uncertainties and extend kinematical and PID range
 - RHIC facility upgrades will increase luminosity
 - > fixed-target program will extend μ_B range
- Iooking forward to new precision data from RHIC

THANK YOU

BACKUP SLIDES

RHIC BEAM ENERGY SCAN

Star Note 598

https://science.energy.gov/~/media/np/nsac/pdf/2015LRP/2015_LRPNS_091815.pdf

Statistics improvement in BES-II

Collider Energy	Fixed- target Energy	CMS Rapidity	μ _B [MeV]
62.4	7.7	2.10	420
39	6.2	1.87	487
27	5.2	1.68	541
19.6	4.5	1.52	589
14.5	3.9	1.37	633
11.5	3.5	1.25	666
9.1	3.2	1.13	699
7.7	3.0	1.05	721

Baryon chemical potential at proposed $\sqrt{s_{NN}}$ in fixed-target mode

David Tlusty

EFFECT OF SOFTENING ON DIRECTED FLOW

with 1st order phase transition best for pions

Hadronic transport model JAM with and without attractive orbits for each two-body scattering

► JAM with attractive orbits matches the data well at $\sqrt{s_{NN}} = 11.5$ and 19.6 GeV

ENERGY DEPENDENCE OF $dv_1/dy|_{y=0}$

Did we find the energy with the softest EOS?

similar dip like in 3FD model with 1st order phase transition, except at a different energy

David Tlusty

RHIC COHERENT ELECTRON COOLING UPGRADE

- ➤ in Modulator each ion induces a density modulation in n electron beam ⇒ electron beam carries information about individual hadrons imprinted in density distortions
- ► in free-electron laser (FEL) the induced density modulation is amplified
- ➤ in Kicker both beams co-propagate again and the longitudinal electric field inside the electron beam affects the ions' energy ⇒ an ion with higher energy arrives ahead of its respective clump of high density and is pulled back and vice versa
- current status of the equipment [I. Pinayev et al., JACoW COOL2017 WEM22 (2018)]

David Tlusty

SIMULATION OF LUMINOSITY WITH ELECTRON COOLING FOR COLLISIONS AT $\sqrt{S_{NN}}$ =7.7 GeV

A. Fedotov, RHIC/AGS Users Meeting (2012)

20

STAR ACCEPTANCE AND PID IMPROVEMENT

David Tlusty