Measurement of the neutron lifetime using a magneto-gravitational trap

Nathan Callahan For the UCN τ Experiment

Indiana University

May 2018

Supported by NSF PHY-1306942

Neutron Lifetime and CKM Unitarity (Using *n* Decay)

- Measure τ_n and λ to measure V_{ud}
- Want $\tau_n < 0.1$ s and $\lambda < 0.025\%$ (A < 0.1%)

Recent history of τ_n measurements

- \blacksquare Beam/Bottle Discrepancy: $\sim 3\sigma$
- Beam Absolute Counting of Neutrons and Protons
- Bottle Non β-decay Losses

Measuring τ with Neutron Traps

Measuring τ with Neutron Traps

How can you even trap a neutron?

 $\blacksquare \sim \!\! 1$ Bounce per Second

UCN τ - A magnetic neutron bottle

Trapped Above by Gravity Below by Magnetic Field (A)

UCN τ - A magnetic neutron bottle

In-Situ Detector - Real Time, Fast, Efficienct, Height Sensitive (C)

$\mathsf{UCN}\tau$ Apparatus

A Typical Lifetime Run

$\begin{array}{l} 877.7 \ \pm 0.7 \ \pm 0.3 (\text{systematic}) \\ \text{R. W. Pattie et. al. } \textit{Science 2018 [arXiv:1707.01817]} \end{array}$

Effect	Upper bound [s]	Method
Depolarization	+ 0.07	Varied B hold
Microphonic heating	+ 0.24	Count High-E UCN
Insufficient cleaning	+ 0.07	Count High-E UCN
Dead time	\pm 0.04	Known dead time
Phase space evolution	\pm 0.10	Mean Arrival Time
Residual gas interactions	\pm 0.03	Measured Pressure
Background shifts	\pm <0.01	Measured background
Total	0.28	(uncorrelated sum)

- \blacksquare ~7,000,000 UCN from 2 Months Data
- More Statistics to come!

Subsequent work

Effect	Estimate [s]	Method
Depolarization	+ 0.07	Measured
Microphonic heating	< 0.15	Monte Carlo
Insufficient cleaning	< 0.05	Monte Carlo
Dead time/pileup	\pm 0.04	Measured
Phase space evolution	\pm 0.10	Measured
Residual gas interactions	\pm 0.03	Measured
Background shifts	\pm <0.01	Measured

*Preliminary

Cleaning Systematic

Heating Systematic

Trap Monte Carlo

- Simplified Spectral Model (3 parameters)
- Detector Model (2 parameters)

• Use χ^2 minimized parameters on separate dataset

Systematics Simulation

- Simulate Cleaning and Storage (optionally Heating)
- \blacksquare Count losses from **Uncleaned** or **Heated** UCN $\rightarrow \Delta \tau$

Condition	Δau [s]	Statistical Uncertainty
Cleaning 100% Absorption	0.034	± 0.0006
Cleaning 50% Absorption	0.050	± 0.0007
Accelerometer Vibrations (1 μ m)	0.031	± 0.005
Simulated 40 μ m Vibrations	0.151	± 0.009

Phase Space Evolution

Phase space evolution can change Draining Efficiency

• Use mean arrival time to measure T_{hold}

Phase Space Evolution

• Shift =
$$T_{\text{program}} - \bar{T} = \Delta T_{\text{hold}}$$

 \blacksquare Systematic $\Delta {\it T}_{\sf hold}$ shift $\rightarrow \delta \tau_{\it n} < 0.1$ s

Data Set	ΔT_{hold}
200/1	-0.005(14)
200/9	-0.107(76)
300/9	-0.038(68)
50/3	+0.009(16)
50/3′	-0.016(18)

Key: $T_{clean}/\#Dips$

Conclusion

- Measure neutron lifetime with trapped UCN
- 0.7 s Statistical Uncertainty
- Need to investigate loss mechanisms (heating, cleaning, etc)
- Monte Carlo estimates small effects from Heating and Cleaning (<0.15 s)
- In-Situ detector allows for Spectral Monitoring
- Phase Space Evolution is small (<0.1 s)

The UCN τ Collaboration

CalTech E.M Fries, K.P. Hickerson,

DePauw A. Komives

ILL P. Geltenbort

- IU E.R. Adamek, N.B. Callahan, W. Fox, C.-Y. Liu, F. Gonzalez, T. O'Connor, W.M. Snow, J. Vanderwerp
- JINR E.I. Sharapov
- LANL D. Barlow, S.M. Clayton (Co-Spokesperson), S. Currie, M.A. Hoffbauer, T. Ito, S. MacDonald, M. Makela, J. Medina, D.J. Morley, C.L. Morris, R.W. Pattie Jr, J. Ramsey, A. Roberts, A. Saunders, S.J. Seestrom, S.K.L. Sjue, P.L. Walstrom, Z. Wang, W. Wei, T.L. Womack, H. Weaver
- NCSU/TUNL C. Cude-Woods, E.B. Dees, A.R. Young, J. Wexler, B.A. Zeck

ORNL J.D. Bowman, L.J. Broussard, S.I. Penttilä

TTU M. Adams, C.B. Davis, K. Hoffman, A.T. Holley (Co-Spokesperson), R. Lumb

UW/CENPA D.J. Salvat

VT X. Ding, B. Vogelaar

Students are shown in blue

Questions