Recent Progress in Nuclear Parton Distributions

Pía Zurita

BNL

CIPANP 2018, May 29 - June 3, 2018

Outline

- Why nuclear PDFs?
- Latest set of nPDFs
- Future experiments
- Exploiting current data

Why nuclear PDFs?

Once upon a time, in a land not so far away...

... people decided to do e+A collisions for fun, because a nucleus **A** is just **Z** protons and **A-Z** neutrons, **right?**

Why nuclear PDFs?

Once upon a time, in a land not so far away...

... people decided to do e+A collisions for fun, because a nucleus **A** is just **Z** protons and **A-Z** neutrons, **right?**

OK, they were SO wrong, so now:

what is affected by the nuclear environment?

a) the non-perturbative part?

- b) the perturbative part?
- c) both?

b) and c) are unpopular answers(but could be right!)

Why nuclear PDFs?

The simplest proposal:

the partons know that they are not alone

Why nuclear PDFs?

The simplest proposal:

+ the partons know that they are not alone

- introduce nuclear PDFs
- use the same evolution equations
- same perturbative expansion for the observables
- and try to perform a global fit to the world data*

$$f_{i}^{A}(x,Q^{2}) = \frac{Zf_{i}^{p/A}(x,Q^{2}) + (A-Z)f_{i}^{n/A}(x,Q^{2})}{A}$$

*results usually shown as the ratio of the parton in nucleus to parton in proton PDF. Other depictions may be used

- Why nPDFs if I do not care about e+A nor p+A?
 - neutrino initiated DIS (useful for proton PDFs)
 - e+d DIS (useful for proton PDFs)
 - non QGP effects in A+A
 - cosmic rays

- Why nPDFs if I do not care about e+A nor p+A?
 - neutrino initiated DIS (useful for proton PDFs)
 - e+d DIS (useful for proton PDFs)
 - non QGP effects in A+A
 - cosmic rays

expectation:

Why nuclear PDFs?

- ✤ Why nPDFs if I do not care about e+A nor p+A?
 - neutrino initiated DIS (useful for proton PDFs)
 - e+d DIS (useful for proton PDFs)
 - non QGP effects in A+A
 - cosmic rays

within experimental uncertainties nPDF extraction is successful:

- + HKM: Hirai, Kumano, Miyama, PRD64 (2001) 034003
- nDS: de Florian, Sassot, PRD69 (2004) 074028
- + HKN: Hirai, Kumano, Nagai, PRC76 (2007) 065207
- + EPS09: Eskola, Paukkunen, Salgado, JHEP 0904 (2009) 065
- + DSSZ: de Florian, Sassot, Stratmann, PZ, PRD85 (2012) 074028
- + nCTEQ15: Kovarik et al., PRD93 (2016) no.8, 085037
- KA15: Khanpour, Tehrani, PRD93 (2016) no.1, 014026
- + EPPS16: Eskola, Paakkinen, Paukkunen, Salgado, EPJ C77 (2017) no.3, 163

 $f_{i/A}\left(x,Q_0^2\right) \equiv f_{i/p}\left(x,Q_0^2\right) R_i^A\left(x,Q_0^2\right)$

 R_{u_v}, R_{d_v} $R_{\bar{u}},\ R_{\bar{d}},\ R_s$ R_{gluon}

$$y_i(A) = y_i(A_{ref}) \left(\frac{A}{A_{ref}}\right)^{\gamma_i[y_i(A_{ref})-1]}$$

e+A, v+A and p(d)+A experiments 1811 data points

А	He	Li	Be	С	AI	Ca	Fe	Cu	Ag	Sn	W	Pt	Au	Pb
# points	37	168	35	232	35	66	78	19	7	159	58	7	41	869

The valence

The valence

EPJ C77 (2017) no.3, 163

proton

nucleus

$$\frac{4}{9}u + \frac{1}{9}d \qquad \longrightarrow \qquad \left(\frac{A+3Z}{9A}\right)u + \left(\frac{4A-3Z}{9A}\right)d$$

The sea

EPJ C77 (2017) no.3, 163

The sea

the and me gluon

Future experiments

- "data" with estimated uncertainties
- impact estimations are tied to the initial parameterizations
- for x < 0.001 the theoretical curves are extrapolations
- mostly focused on the gluon

Electron-lon collider

there is much more about EIC than nPDFs (duh!) visit <u>http://www.eicug.org/</u> for more info

Inclusive and charm reduced cross-section

Aschenauer, Fazio, Lamont, Paukkunen, PZ, PRD96 (2017) no.11, 114005

impact on EPPS16* nPDFs

PRD96 (2017) no.11, 114005

See also C. Weiss talk at "Santa Fe Jets and Heavy Flavor Workshop, 30-Jan-18"

https://indico.fnal.gov/event/15328/session/4/contribution/15/material/slides/0.pdf

Jets and di-jets

Klasen and Kovarik, arXiv:1803.10985 [hep-ph].

Klasen, Kovarik, Potthoff, PRD95 (2017) no.9, 094013

LHeC

LHeC

 "data" from EPS09

+ NC & CC

from H. Paukkunen's talk in POETIC8

from H. Paukkunen's talk in POETIC8

AFTER

- Proposed fixed target experiment at LHC
 - study the large-x parton content in nucleons/ nuclei
 - study the dynamics and spin of gluons inside (un)polarised nucleons/nuclei
 - Study heavy-ion collisions between RHIC and SPS energies towards large rapidities

For more information see Ingo Schienbein's talk:

https://indico.ectstar.eu/event/9/contributions/191/attachments/119/141/trento_160418.pdf

Exploiting current data

- + Archeology: DY in π +A
 - Badier, et al., Phys. Lett. B104 (1981) 335, P. Bordalo, et al., Phys. Lett.
 B193 (1987) 368, J. G. Heinrich, et al., Phys. Rev. Lett. 63 (1989) 356–359.
 - + Paakkinen, Eskola, Paukkunen, Phys.Lett. B768 (2017) 7-11
- Centrality dependent data:
 - + Helenius, Eskola, Honkanen, Salgado, JHEP 1207 (2012) 073.
 - Paukkunen, Phys.Lett. B745 (2015) 73-78, Helenius, Paukkunen, Eskola, Eur.Phys.J. C77 (2017) no.3, 148.
- Particle production:
 - + Helenius, Eskola, Paukkunen, Nucl.Phys. A932 (2014) 415-420
 - <u>https://indico.cern.ch/event/663878/contributions/2926133/attachments/</u>
 <u>1618981/2574636/Paukkunen_POETIC8.pdf</u>
 - Kusina, Lansberg, Schienbein, Shao, arXiv:1712.07024 [hep-ph]

Summary

- far from the precision of proton PDFs due to the available data
- future colliders have a huge potential to help us improve:

- for DIS at an EIC:

- low energy: kinematical range moderately extended, high precision data
- high energy: kinematical range extended, more chances of finding new phenomena
- for charm: win-win situation!
- also F_{L} will help determine the gluon

- for jets and di-jets at an EIC:
- relevant decrease of the gluon uncertainty
- higher energy c.o.m. relevant
- also great possibilities for LHeC

Summary

•

- While we wait for new results to include:
 - look for other measurements/observables (be creative!)
 - improve FFs so we can use available data
 - apply more refined techniques in nPDFs extractions
 - joint PDFs + nPDFs + FFs + nFFs analysis?

- Coming soon... ish:
 - LHC Run II
 - RHIC isobar run
 - JLAB 12

Comparing nuclear PDFs

	SET	НКМ	nDS	HKN	EPS09	DSSZ	nCTEQ15	KA15	EPPS16	
d a t a t y p e	e-DIS	yes	yes	yes	yes	yes	yes	yes	yes	
	D-Y	no	yes	yes	yes	yes	yes	yes	yes	
	pions	no	no	no	yes	yes	yes	no	yes	
	v-DIS	no	no	no	no	yes	no	no	yes	
	EW	no	no	no	no	no	no	no	yes	
	jets	no	no	no	no	no	no	no	yes	
# data points		309	420	1241	929	1579	740	1479	1811	
χ²/N		1.828	0.714	1.197	0.787	0.978	0.793	1.147	0.988	
Q ₀ ² (GeV ²)		1	0.4	1	1.69	1	1.69	2	1.69	
accuracy		LO	NLO	NLO	NLO	NLO	NLO NNLO		NLO	
proton PDF		MRST2001	GRV	MRST98	CTEQ6.1M	MSTW2008	CTEQ6.1	JR09	CT14NLO	
deuteron		no/yes	no	yes	no	no	yes/no	?	no	
flavour separation?		valence	no	no	no	no	valence	no	yes	