FRAGMENTATION STUDIES AT THE B-FACTORIES

Anselm Vossen

CIPANP 2018 June 1

FACTORIZED QCD: HADRONIZATION DESCRIBED BY FRAGMENTATION FUNCTIONS

Field, Feynman (1977): Fragmentation functions encode the information on how partons produced in hardscattering processes are turned into an observed colorless hadronic bound final-state [PRD 15 (1977) 2590]

- Complementary to the study of nucleon structure (PDFs)
- Cannot be computed on the lattice
- Questions to be asked
 - Macroscopic effect (distribution, polarization) of microscopic properties (quantum numbers)?
 - Effect of QCD vacuum the quark is traversing
 - Study of the formation of hadrons \rightarrow e.g. Phys.Rev. D97 (2018) no.7, 072005

AMSTERDAM NOTATION FOR FFS WITH QUARK/HADRON POLARIZATION

Observables:

z: fractional energy of the quark carried by the hadron

 $p_{h,T}$: transverse momentum of the hadron wrt the quark direction: **TMD FFs**

Parton polarization \rightarrow	Spin averaged	longitudinal	transverse
Hadron Polarization 🗸			
spin averaged	$D_1^{h/q}(z,p_T) = \left(\bullet \rightarrow \bullet \right)$		$H_1^{\perp h/q}(z, p_T) = \left(\stackrel{\bullet}{\bullet} \rightarrow \bigcirc \right) - \left(\stackrel{\bullet}{\bullet} \rightarrow \bigcirc \right)$
longitudinal		$G_1^{h/q}(z, p_T) = \left(\bullet \to \bullet \right) - \left(\bullet \to \bullet \right)$.)
Transverse (here Λ)	$D_{1T}^{\perp \Lambda/q}(z, p_T) = \left(\bullet \longrightarrow \bullet \right)$		$H_1^{q/\Lambda}(z, p_T) = \left(\stackrel{\bullet}{\bullet} \rightarrow \stackrel{\bullet}{\bullet} \right) - \left(\stackrel{\bullet}{\bullet} \rightarrow \stackrel{\bullet}{\bullet} \right)$

- Theoretically many more, in particular with polarized hadrons in the final state and transverse momentum dependence → similar to PDFs encoding spin/orbit correlations
- Determining final state polarization needs self analyzing decay (Λ)
- Gluon FFs similar but with circular/linear polarization (not as relevant for e+e-)

DI-HADRON FRAGMENTATION FUNCTIONS

Additional Observable:

 $\vec{R} = \vec{P_1} - \vec{P_2}$:

The relative momentum of the hadron pair is an additional degree of freedom:

<u>the orientation of the two hadrons w.r.t. each other and the jet direction can be an indicator of the quark transverse spin</u> <u>Do not need</u>

Small \vec{R} : non-perturbative object.

Parton polarization → Hadron Polarization ↓	Spin averaged	longitudinal	transverse
spin averaged	$D_1^{h_1h_2/q}(z,M)$	$G_1^{1\perp}(z,M,P_{hT})$	$H_1^{\perp}(z, M)$

G_1^{\perp} : T-odd FF

- chiral-even function
- log. polarized $q \rightarrow$ two unp. Hadrons
- →connection to jet-handedness and (possibly) QCD vacuum structure

H_1^{\triangleleft} : T-odd FF

- Chiral-odd function
- Transv. polarized $q \rightarrow$ two unp. Hadrons
- \rightarrow Collinear! (unlike Collins)

ACCESS OF FFS FOR LIGHT MESONS IN E⁺E⁻ (SPIN AVERAGED CASE)

$$\frac{1}{\sigma_{\rm tot}} \frac{d\sigma^{e^+e^- \to hX}}{dz} = \frac{1}{\sum_q e_q^2} \left(2F_1^h(z, Q^2) + F_L^h(z, Q^2) \right),$$

$$2F_1^h(z,Q^2) = \sum_q e_q^2 \left(D_1^{h/q}(z,Q^2) + \frac{\alpha_s(Q^2)}{2\pi} \left(C_1^q \otimes D_1^{h/q} + C_1^g \otimes D_1^{h/g} \right)(z,Q^2) \right)$$

- Cleanest process
- Clean environment, hermetic dectors \rightarrow can reconstruct complex final states, differentiate from feed-down
- Well understood, calculations available at NNLO
- Limited access to flavor
 - Use different couplings to γ^* and Z^0
 - Use polarization (SLD) and parity violating coupling
 - Use back-to-back correlations for different flavor combinations \rightarrow Phys.Rev. **D**92 (2015) no.9, 092007 (Belle)
- Limited access to gluon FF
 - From evolution
 - From three jet events (but theory treatment not clear)

CORRELATION MEASUREMENTS IN E+E-

- Access spin dependence and $p_{\rm T}$ dependence (convolution or in jet) without PDF complication
- Made possible by B-factory luminosities

THE BESII, BELLE AND BABAR EXPERIMENTS

WORLD DATA ON E⁺E⁻

- Dominated by B factories
- Limited lever arm in \sqrt{s} in particular at high z
- Precision data includes charged single hadrons π, K, p, D^(*), Λ, charmed baryons...
- Pairs of π , K, p
- With B factory data theory and data uncertainties similar, good description by NNLO, some more work tbd at high and low z

THE FUTURE: BELLE II AT SUPERKEKB (40X KEKB IN LUMINOSITY)

Distributed over the world via GRID

See my talk on Wednesday

MEASUREMENT OF DI-HADRON CROSS-SECTION TO EXTRACT $D_1^{h_1h_2/q}(z, M)$ (Seidl et. al. Phys.Rev. D96 (2017) no.3, 032005)

- From count rates to cross-sections and asymmetries
 - Particle (mis) identification
 - Smearing unfolding
 - Non- \overline{qq} processes
 - Acceptance correction
 - QED radiation
 - Optional: weak decay removal
 - Asymmetries are corrected for "false asymmetries" and thrust axis smearing if applicable

RESULTS SYSTEMATICS DOMINATED

- Low z: Dominated by PID uncertainties Belle II prospects: Improved PID, higher statistics to improve uncertainties on PID
- High z: Dominated by ISR uncertainties Belle II prospects: better understanding of ISR radiation with better statistics

Seidl et. al. Phys.Rev. D96 (2017) no.3, 032005

BELLE II PROSPECTS

- Partial Wave decomposition (more general: θ dependence)
- Higher order PWs lead to different moments in θ and φ
- In models, evolution of the different PWs different
- Important to have a full picture to understand mixing effects in ratios/partial integrals/acceptance
- Missing info from partial wave estimated to have effects up to 10% e.g. on extraction of transversity

Belle II prospects: Sufficient statistics for full partial wave decomposition

m [GeV]

14

Seidl et. al. Phys.Rev. D96 (2017) no.3, 032005

POLARIZED HYPERON PRODUCTION

- Large Λ transverse polarization in unpolarized pp collision
 PRL36, 1113 (1976); PRL41, 607 (1978)
- Caused by polarizing FF $D_{1T}^{\perp}(z, p_{\perp}^2)$?
- Polarizing FF is chiral-even, has been proposed as a test of universality.
 PRL105,202001 (2010)
- OPAL experiment at LEP has been looking at transverse Λ polarization, no significant signal was observed.
 Eur. Phys. J. C2, 49 (1998)
- FF counterpart of the Sivers function.

C

 $x_F = p_L / \max p_L^{(\text{Phys.Lett. B185 (1987) 209)}}_{L \sim LO} x_1 - x_2 \sim_{forward} x_1$

OBSERVABLES IN Λ RESTFRAME

BACKGROUND UNFOLDING

- Σ^* decays to Λ strongly, is included in the signal.
- Feed-down from $\Sigma^0(22.5\%)$, $\Lambda_c(20\%)$ decays need to be understood.
- The Σ^0 -enhanced ($\Sigma^0 \rightarrow \Lambda + \gamma$) (Br~100%). and Λ_c enhanced($\Lambda_c \rightarrow \Lambda + \pi^+$)(Br~1.07%) data sets are selected and studied.
- The measured polarization can be expressed as:

$$P^{mea.} = (1 - \sum_{i} F_i) P^{true} + \sum_{i} F_i P_i,$$

- F_i is the fraction of feed-down component i, estimated from MC. P_i is polarization of component i.
- Polarization of Λ from Σ^0 decays is found has opposite sign with that of inclusive Λ .

18

- Polarization rises with p_t in the lowest z_{Λ} and highest z_{Λ} bin. But the dependence around 1 GeV in the intermediate z_{Λ} bins \rightarrow Unexpected! (might be related to fragmenting quark flavor dependence on z_1, z_2)
- Correlation with opposite hemisphere light meson \rightarrow quark flav/charge dependence

- Explore low pT region with higher statistics and better tracking resolution
- Feed down correction for pT dependence and associated production
 - (currently only for z dependence, introduces large uncertainties)
 - $\Lambda^{\uparrow} \Lambda^{\uparrow}$ correlations

. . . .

19

SUMMARY

- e⁺e⁻ played and will play a crucial role in understanding hadronization and extracting fragmentation functions
- Important contributions to our knowledge of polarized and k_T dependent FFs
- Belle II started its physics program and will enable a new level of precision and the use of more rare probes
- Belle results on the horizon
 - k_T dependence of D_1
 - η/π^0 Collins

BACKUP

COLLINS EFFECT FOR KAON/PION PAIRS

Simultaneous measurement of KK, K π and $\pi\pi$ Collins asymmetries from BaBar data

- Rise of the asymmetry as a function of *z*:
- A^{UL} KK asymmetry slightly higher than pion asymmetry for high z
- KK asymmetry consistent with zero at lower z
- $\pi\pi$ asymmetries consistent with previous measurements (PRD90, 052003)

COLLINS EFFECT

- Thrust axis to estimate the $q\overline{q}$ direction
- $\phi_{1,2}$ defined using thrust-beam plane

Normalized cross-section: $e^+e^- \rightarrow (h_1h_2)(\overline{h_1} \ \overline{h_2}) + X$ $\propto 1 + H_1^{\perp} \cdot \overline{H_1^{\perp}} \cos(\phi_1 + \phi_2)$

RF0 or Second hadron momentum **RF**

- Use **one track** in a pair
- Very clean experimentally (no thrust axis)

Normalized cross-section: $e^+e^- \rightarrow (h_1h_2)(\overline{h_1} \ \overline{h_2}) + X$ $\propto 1 + H_1^{\perp} * \overline{H_1^{\perp}} \cos(2\phi_0)$

COLLINS EFFECT FOR KAON/PION PAIRS

Simultaneous measurement of KK, K π and $\pi\pi$ Collins asymmetries from BaBar data

- Rise of the asymmetry as a function of *z*:
- A^{UL} KK asymmetry slightly higher than pion asymmetry for high z
- KK asymmetry consistent with zero at lower z
- $\pi\pi$ asymmetries consistent with previous measurements (PRD90, 052003)

DI-HADRON ASYMMETRIES

- Conceptually similar measurement as Collins with $\overrightarrow{P_{h\perp}} \leftrightarrow \overrightarrow{R_{\perp}}$
- Normalized cross section: $e^+e^- \rightarrow (h_1h_2)(\overline{h_1}\,\overline{h_2}\,) + X \propto 1 + H_1^{\angle}\,\overline{H_1^{\angle}}\cos(\phi_{R1} + \phi_{R2}) + G_1^{\perp}\overline{G_1^{\perp}}\cos(2(\phi_{R1} - \phi_{R2}))$
- See talks by Aram and Marco

Extraction of $cos(\phi_{R_1} + \phi_{R_2})$ First measurement of Interference Fragmentation Function

See Marco's talk about Transversity extraction From di-hadrons

NEW: USE JET RECONSTRUCTION AT BELLE

- Robust vs. final state radiation
- De-correlate axis between hemispheres
 - We use anti-kT algorithm implemented in fastjet
 - Cone radius R=1.0
 - Min energy per jet 2.75 GeV \rightarrow suppress weak decays
- Only allow events with 2 jets passing energy cut (dijet events)
- Only particles that form the jet are
- Thrust cut of 0.8<T< 0.95

ASYMMETRIES FOR $COS(2(\phi_{R1}-\phi_{R2})) (G_1^{\perp})$ SMALL

- No evidence of local p-odd effects yet
- Next step: partial wave analysis
- See recent NJL model calculations by Matevosyan et al.
 - →GIT signal about half of IFF signal, produced by 'worm gear' splitting functions~gIT

FITS AND POLARIZATION EXTRACTION

- Fit the acceptance corrected $\cos\theta$ distributions with $1 + p_0 \cos\theta$.
- The polarization of interest: p_0/α (decay constant)
- In the data ratio, polarization is obtained via $p_0/(\alpha_+ \alpha_-)$.
- In data ratios, the slope on the $\cos\theta$ distributions are about two times larger than that in MC-corrected ratios, the $(\alpha_+ - \alpha_-)$ is also about two times larger than $\alpha_+(\alpha_-)$.
- Results from MC-corrected ratio and data ratio are consistent with each other.
- Nonzero polarization, magnitude rises to about ~5% with $z_{\Lambda} = 2E_{\Lambda}/\sqrt{s}$.

POLARIZED HYPERON PRODUCTION

- Large Λ transverse polarization in unpolarized pp collision
 PRL36, 1113 (1976); PRL41, 607 (1978)
- Caused by polarizing FF $D_{1T}^{\perp}(z, p_{\perp}^2)$?
- Polarizing FF is chiral-even, has been proposed as a test of universality.
 PRL105,202001 (2010)
- OPAL experiment at LEP has been looking at transverse Λ polarization, no significant signal was observed.
 Eur. Phys. J. C2, 49 (1998)
- FF counterpart of the Sivers function.

C

 $x_F = p_L / \max p_L^{(\text{Phys.Lett. B185 (1987) 209)}} x_F = p_L / \max p_L^{(\sim} x_1 - x_2^{\sim} forward x_1)$

OBSERVABLES IN Λ RESTFRAME

FITS AND POLARIZATION EXTRACTION

- Fit the acceptance corrected $\cos\theta$ distributions with $1 + p_0 \cos\theta$.
- The polarization of interest: p_0/α (decay constant)
- In the data ratio, polarization is obtained via $p_0/(\alpha_+ \alpha_-)$.
- In data ratios, the slope on the $\cos\theta$ distributions are about two times larger than that in MC-corrected ratios, the $(\alpha_+ - \alpha_-)$ is also about two times larger than $\alpha_+(\alpha_-)$.
- Results from MC-corrected ratio and data ratio are consistent with each other.
- Nonzero polarization, magnitude rises to about ~5% with $z_{\Lambda} = 2E_{\Lambda}/\sqrt{s}$.

BACKGROUND UNFOLDING

- Σ^* decays to Λ strongly, is included in the signal.
- Feed-down from $\Sigma^0(22.5\%)$, $\Lambda_c(20\%)$ decays need to be understood.
- The Σ^0 -enhanced ($\Sigma^0 \rightarrow \Lambda + \gamma$) (Br~100%). and Λ_c enhanced($\Lambda_c \rightarrow \Lambda + \pi^+$)(Br~1.07%) data sets are selected and studied.
- The measured polarization can be expressed as:

$$P^{mea.} = (1 - \sum_{i} F_i) P^{true} + \sum_{i} F_i P_i,$$

- F_i is the fraction of feed-down component i, estimated from MC. P_i is polarization of component i.
- Polarization of Λ from Σ^0 decays is found has opposite sign with that of inclusive Λ .

$\mathsf{Z}_\Lambda, \mathsf{P}_\mathsf{T}$ dependence of observed Λ polarization

- Polarization rises with p_t in the lowest z_{Λ} and highest z_{Λ} bin. But the dependence reverses around I GeV in the intermediate z_{Λ} bins \rightarrow Unexpected! (might be related to fragmenting quark flavor dependence on z_1, z_2)
- Correlation with opposite hemisphere light meson \rightarrow quark flav/charge dependence
 - Sign of asymmetry dependent on quark charge cf Sivers

SUMMARY

- FF programs at Belle, BaBar and BES III has provided key measurements leading to new insights into the spin structure of the nucleon and QCD in general!
- Results on the horizon include p_T dependence of D_1 , Collins FF for η, π^0
- Belle II will start data taking next year and will quickly surpass Belle data with superior data quality
 - High statistics, multidimensional extraction of $H_1^{\perp h/q}$, LPV effects in high multiplicity events ...
 - Quantification of the impact of precision FF measurements on Jlab12 and EIC program would be helpful to bolster FF program at Belle II

FRAGMENTATION FUNCTIONS WITH ADDITIONAL DEGREES OF FREEDOM: NOVEL PROBES OF THE NUCLEON STRUCTURE AND HADRONIZATION

- Di-hadron fragmentation functions
- Polarized Hyperons

DI-HADRON FRAGMENTATION FUNCTIONS

- Additional degree of freedom $(\vec{R} = \vec{P_1} \vec{P_2})$
 - Plus z, P_T
- Relative momentum of hadrons can carry away angular momentum
 - Partial wave decomposition in $\boldsymbol{\theta}$
 - Relative and total angular momentum \rightarrow In principle endless tower of FFs
 - Analogue of 1h production with spin in final state
- Transverse polarization dependence in collinear framework
- Makes 'new' FFs possible, such as G₁[⊥] :T-odd chiral even. In 1h case, this needs polarized hadron in the final state →See H.
 Matevosyan's talk!
- Similar to Λ FF,chiral-even,T-odd: Important to check factorization

EXAMPLE, ACCESS OF e(x) in SIDIS X-SECTION

• Di-hadron cross section

$$F_{LU}^{\sin\phi_R} = -x \frac{|\mathbf{R}|\sin\theta}{Q} \left[\frac{M}{m_{hh}} x e^q(x) H_1^{\triangleleft q} \left(z, \cos\theta, m_{hh} \right) + \frac{1}{z} f_1^q(x) \widetilde{G}^{\triangleleft q} \left(z, \cos\theta, m_{hh} \right) \right],$$
(WW Approximation)

• Single hadron cross-section: mixes other contributions:

$$\begin{split} F_{LU}^{\sin(\phi_h)} &= \frac{2M}{Q} \mathcal{I} \left[-\frac{k_T \hat{P}_{h\perp}}{M_h} \left(xeH_1^{\perp} + \frac{M_h}{Mz} f_1 \tilde{G}^{\perp} \right) \right. \\ &+ \frac{p_T \hat{P}_{h\perp}}{M} \left(xg^{\perp} D_1 + \frac{M_I}{Mz} h_1^{\perp} \tilde{E} \right) \right] \end{split}$$

RECENT BELLE RESULT

(Seidl et. al. Phys.Rev. D96 (2017) no.3, 032005)

43

RESULTS SYSTEMATICS DOMINATED

- Low z: Dominated by PID uncertainties Belle II prospects: Improved PID, higher statistics to improve uncertainties on PID
- High z: Dominated by ISR uncertainties Belle II prospects: better understanding of ISR radiation with better statistics

Seidl et. al. Phys.Rev. D96 (2017) no.3, 032005

BELLE II PROSPECTS

- Partial Wave decomposition (more general: θ dependence)
- Higher order PWs lead to different moments in θ and φ
- In models, evolution of the different PWs different
- Important to have a full picture to understand mixing effects in ratios/partial integrals/acceptance
- Missing info from partial wave estimated to have effects up to 10% e.g. on extraction of transversity

Belle II prospects: Sufficient statistics for full partial wave decomposition

m [GeV]

46

Seidl et. al. Phys.Rev. D96 (2017) no.3, 032005

POLARIZED HYPERON PRODUCTION

- Large Λ transverse polarization in unpolarized pp collision
 PRL36, 1113 (1976); PRL41, 607 (1978)
- Caused by polarizing FF $D_{1T}^{\perp}(z, p_{\perp}^2)$?
- Polarizing FF is chiral-even, has been proposed as a test of universality.
 PRL105,202001 (2010)
- OPAL experiment at LEP has studied transverse Λ polarization, no significant signal was observed. Eur. Phys. J. C2, 49 (1998)
- FF counterpart of the Sivers function.

a

ISR data (Phys.Lett. B185 (1987) 209) $x_F = p_L / \max p_L \sim_{LO} x_1 - x_2 \sim_{forward} x_1$

- Polarization rises with p_t in the lowest z_{Λ} and highest z_{Λ} bin. But the dependence constant around 1 GeV in the intermediate z_{Λ} bins \rightarrow Unexpected! (might be related to fragmenting quark flavor dependence on z_1, z_2)
- Correlation with opposite hemisphere light meson \rightarrow quark flav/charge dependence

48

- Explore low pT region with higher statistics and better tracking resolution
- Feed down correction for pT dependence and associated production
 - (currently only for z dependence, introduces large uncertainties)
 - $\Lambda^{\uparrow} \Lambda^{\uparrow}$ correlations

. . . .

KEKB \rightarrow SUPERKEKB: DELIVER INSTANTANEOUS LUMI X 40

50

BELLE II DETECTOR (COMP. TO BELLE)

READOUT INTEGRATION

Belle II Control Room

Readout integration of installed subdetectors and central DAQ is in progress.
Combined data taking established in cosmic running

CURRENT STATUS AND SCHEDULE

- Phase I (complete)
 - Accelerator commissioning
- Phase 2 (early 2018)
 - First collisions (20±20 fb⁻¹)
 - Partial detector
 - Background study
 - Physics possible
- Phase 3 ("Run I", early 2019)
 - Nominal Belle II start
- Ultimate goal: 50 ab⁻¹

- Search for New Physics via precision measurements
 - CPV, (semi-)leptonic/penguin decays, LFV, dark sector, ...

FF PROGRAM AT BELLE II

- High Precision measurements of spin dependent Fragmentation Functions
 - Precision back-to-back correlations of less copious hadrons (e.g. Λ)
 - Precision should be on par with anticipated SIDIS data from JLab12
 - LPV effects in high multiplicity events helped by statistics and increased acceptance for low multiplicity tracks
- State of the Art Detector
 - PID: increase efficiency of e.g. multi kaon final states
 - Vertexing: More efficient charm rejection for FF studies
 - Reduce systematics (in particular charm) and improve PID

FRAGMENTATION FUNCTIONS APPEAR ALMOST ALWAYS WHEN ACCESSING PARTONIC STRUCTURE OF THE NUCLEON

- Proton Structure extracted using QCD factorization theorem
- FFs contribute to virtually all processes:
- Particular important for transverse spin structure \rightarrow need detailed understanding of FFs to use as 'quark polarimeter' and tag the flavor of the struck quark **Proton Structure**

-0.2

0.2 0.4 0.6

0.8 X

QCD VACUUM TRANSITIONS CARRY CHIRALITY

Kharzeev, McLerran and Warringa, arXiv:0711.0950, Fukushima, Kharzeev and Warringa, arXiv:0808.3382

 $\sigma \propto H_1^{\perp} \left(z_1 \right) \overline{H}_1^{\perp} \left(z_2 \right) \cos(\phi_1 + \phi_2) + C$

 $\sigma \propto H_1^{\perp} \left(z_1 \right) \overline{H}_1^{\perp} \left(z_2 \right) \cos(\phi_1 + \phi_2) + C$

- Fragmentation in P-odd bubble leads spin-momentum correlation
- Difference in 'Winding number' gives effective increment in chirality
- Spin alignment via chromomagnetic-electric effect \rightarrow FF \widetilde{H}_1

MIX OF P-ODD FF WITH COLLINS FF LEADS TO EVENT-BY-EVENT ASYMMETRY

- Fragmentation in P-odd bubble leads spin-momentum correlation (both fragmenting quarks in the 'bubble' $\rightarrow G_1^{\perp}$ /jet handedness like effect (but conserving parity))
- Difference in 'Winding number' gives effective increment in chirality
- Spin alignment via chromomagnetic-electric effect
- Azimuthal event by event modulation $\rightarrow sin(\phi_1 + \phi_2)$ modulation \rightarrow needs large dataset of high multiplicity events \rightarrow Belle II
- See Kang, Kharzeev, Phys.Rev.Lett. 106 (2011) 042001

E+E- AS A BASELINE FOR HADRONIC COLLISIONS

Acta Phys.Polon.Supp. 9 (2016) 207-211

- Beyond pQCD there are new phenomena emerging in hadronic collisions
 - Ridge in high multiplicity hadronic collisions
 - pT broadening in back-to-back production
 - ...
- e+e- can provide baseline
- More statistics needed to select e.g. high multiplicity events

Measuring transverse spin dependent di-Hadron Correlations In unpolarized e⁺e⁻ Annihilation into Quarks

 $\mathbf{A} \propto \mathbf{H}_{1}^{2}(\mathbf{z}_{1},\mathbf{m}_{1})\overline{\mathbf{H}}_{1}^{2}(\mathbf{z}_{2},\mathbf{m}_{2})\boldsymbol{\mathcal{COS}}\left(\boldsymbol{\varphi}_{1}+\boldsymbol{\varphi}_{2}\right)$

Interference effect in e⁺e⁻ quark fragmentation will lead to azimuthal asymmetries in di-hadron correlation measurements!

Experimental requirements:

- Small asymmetries → very large data sample!
- Good particle ID to high momenta.
- Hermetic detector

Di-hadron Fragmentation Functions

Starting from the fully integrated e⁺e⁻ cross section into four unpolarized hadrons with two leading hadrons in each jet, authors of ref. PRD67, 094003 explicitly derive the asymmetry:

$$A(y, z, \bar{z}, M_h^2 \overline{M}_h^2) = \frac{\langle \cos(2(\phi_R - \phi_{\overline{R}})) \rangle}{\langle 1 \rangle} = \frac{\sum_{a, \bar{a}} e_a^2 \frac{3\alpha^2}{2Q^2} z^2 \bar{z}^2 A(y) \frac{1}{M_1 M_2 \overline{M}_1 \overline{M}_2} G_1^{\perp a}(z, M_h^2) \overline{G}^{\perp a}(\bar{z}, \overline{M}_h^2)}{\sum_{a, \bar{a}} e_a^2 \frac{6\alpha^2}{Q^2} A(y) z^2 \bar{z}^2 D_1^a(z, M_h^2) \overline{D}_1^a(\bar{z}, \overline{M}_h^2)}$$

Two-dimensional χ^2 fit is performed to the normalized di-pion pairs:

$$1 + A^{\cos(\phi_{R1} + \phi_{R2})} \cos(\phi_{R1} + \phi_{R2}) + A^{\cos(2(\phi_{R1} - \phi_{R2}))} \cos(2(\phi_{R1} - \phi_{R2})) - A^{\cos(2(\phi_{R1} - \phi_{R2}))} - A^{\cos(2(\phi_{R1} - \phi_{R2})}) - A^{\cos(2(\phi_{R1}$$

NO SIGNAL observed at Belle

BUT more investigations about the thrust axis method and jet-axes reconstruction are needed

- longitudinally polarized quark IFF $G_1{}^{\perp}$

- chiral-even function related to the jet handedness
- asymmetric reference frame
- experimentally: switch to a symmetric frame
 - Belle preliminary: arXiv:1505.08020
 - angles are computed using the jet axis of di-jet event

 \mathcal{B}

0.8

z

 jet axes reconstructed using anti-kT jet algorithm JHEP0804, 063

Summary and Conclusions

- Spin-dependent fragmentation functions provide key informations for understanding the hadronic structure and can also be used as a tool for the extraction of parton distribution functions
- e⁺e⁻ annihilation experiments offer the ideal conditions to access FFs

one hadron FF	without k _T	with k _T
spin-0	D_1	H_{1}^{\perp}
spin-1/2	D_1, G_1, H_1	D_{1T}^{\perp} , H_{1}^{\perp} , G_{1T} , H_{1L}^{\perp} , H_{1L}^{\perp}
spin-1	D_1 , D_{1LL} , G_1 , H_1 , H_{1LT}	DIT ^{\perp} , H1 ^{\perp} , G1T, H1L ^{\perp} , H1L ^{\perp} , D1T ^{\perp} , D1LT, D1TT, G1LT, G1TT, H ^{\perp} 1LL, H'1LT, H ^{\perp} 1LT
two hadrons FF	without k _T	with k _T
spin-0	$D_1, H_1 >$	G_1^{\perp}, H_1^{\perp} high

T-odd

OTHER PROCESSES NEEDED FOR FLAVOR SEPARATION AND GLUON FF

66

$\mathsf{Z}_\Lambda, \mathsf{P}_\mathsf{T}$ dependence of observed Λ polarization

- Polarization rises with p_t in the lowest z_{Λ} and highest z_{Λ} bin. But the dependence reverses around I GeV in the intermediate z_{Λ} bins \rightarrow Unexpected! (might be related to fragmenting quark flavor dependence on z_1, z_2)
- Correlation with opposite hemisphere light meson \rightarrow quark flav/charge dependence
 - Sign of asymmetry dependent on quark charge cf Sivers

POLARIZED HYPERON PRODUCTION

- Large Λ transverse polarization in unpolarized pp collision
 PRL36, 1113 (1976); PRL41, 607 (1978)
- Caused by polarizing FF $D_{1T}^{\perp}(z, p_{\perp}^2)$?
- Polarizing FF is chiral-even, has been proposed as a test of universality.
 PRL105,202001 (2010)
- OPAL experiment at LEP has studied transverse Λ polarization, no significant signal was observed. Eur. Phys. J. C2, 49 (1998)
- FF counterpart of the Sivers function.

a

ISR data (Phys.Lett. B185 (1987) 209) $x_F = p_L / \max p_L \sim_{LO} x_1 - x_2 \sim_{forward} x_1$

ADVANTAGES OF E+E-

- Reconstruct complex final states (e.g. lambda) with feed-down contributions etc
- Correlations dependent on initial quark spin (not known if quark comes from proton)
- Correlations dependent on pT
- Null-test for back-to-back correltions in pp, HI colissions

Data samples we (will) have

71

Measuring transverse spin dependent di-Hadron Correlations In unpolarized e⁺e⁻ Annihilation into Quarks

Normalized cross section $e^+e^- \rightarrow (h_1h_2)(\overline{h_1} \ \overline{h_2}) + X$ $\propto 1 + H_1^{\angle} \overline{H_1^{\angle}} \cos(\phi_1 + \phi_2) + G_1^{\perp} \overline{G_1^{\perp}} \cos(2(\phi_1 - \phi_2))$ Interference effect in e⁺e⁻ quark fragmentation will lead to azimuthal asymmetries in di-hadron correlation measurements!

Experimental requirements:

- Small asymmetries → very large data sample!
- Good particle ID to high momenta.
- Hermetic detector

OBSERVABLES IN Λ RESTFRAME

PERTURBATIVE OCD Time like splitting functions have singularities (0.1 (unlike space like important for DIS)

- MLLA \rightarrow test for resummation
- Observed shape consistent with QCD calculations (access to $\alpha_{\rm S}$)
- FCC-ee might go to lower z. Impact?

Collins Effect vs (z_1, z_2)

- Significant non-zero asymmetries A₁₂, A₀ in all bins
- Strong dependence on (z₁,z₂) observed in all the experiments
- A_{UC}<A_{UL} as expected; complementary informations about favored and disfavored fragmentation processes

11

^{*}PRD 93,014009(2016)

COLLINS EFFECT VS PT AND THRUST POLAR ANGLE

The asymmetries increase for increasing pt:

- less pronounced for A₁₂, but large uncertainties due to the pt resolution
- steeper pt dependence for BESIII
 - different kinematic regions: <z>_{BESIII} > <z>_{BaBar}

NLL': next-to-leading-logarithm approximation

LL: leading logarithmic calculation

••••• No TMD evolution

Calculation performed with fixed parameters from Table I in PRD93,014009

- A^{UL} and A^{UC} asymmetries are described very well
- TMD evolution at NLL' describes e⁺e⁻ and SIDIS data adequately well
- better description including higher orders: improvement of the theoretical uncertainties

See recent model calculations by Matevosyan et al. → 'worm gear' type splitting function (cmp to glt pdf)

LAMBDA RECONSTRUCTION

• Detect light hadron (K^{\pm}, π^{\pm}) in the opposite hemisphere \rightarrow enhance or suppress different flavors fragmenting in $\Lambda(\overline{\Lambda})$.

HYPERON PRODUCTION AS A TOOL TO STUDY BARYON SPIN STRUCTURE

- Lambda polarization allows to study spin-orbit correlation of quarks inside Baryon \rightarrow counterpart of the Sivers parton distribution function (k_T dependence of quark distributions in transversely polarized proton)
- A non-vanishing D_{1T}^{\perp} could help to shed light on the spin structure of the Λ , especially about the quark orbital angular momentum, a missing part of the spin puzzle of the nucleon.
- Produce Lambda with certain p_T
- Check Transverse Polarization depending on p_{T} and flavor
- Analogue of the Sivers effect in the Similar Universality checks (T-odd but not chiral odd) allows to fix sign

Рт

QUARK FLAVOR TAG BY THE LIGHT HADRON

ū

U

S

U

0.8

0.9

Ζ_π-

0.8 0.9

 Z_{π^+}

- An attempt to look at the flavor tag effect of the light hadron, based on MC. (Pythia6.2)
- The fractions of various quark flavors going to the Λ 's hemisphere are shown in different $[z_{\Lambda} z_{\rm h}]$ region.
- MC indicates that the tag of the quark flavors is more effective at low z_{Λ} and high z_h . It explains why at low z_{Λ} and high z_h , polarization in $\Lambda + h^+$ and $\Lambda + h^+$ h^- have opposite sign.

π/K TAG IN OPPOSITE HEMISPHERE

- At low z_{Λ} , polarization in $\Lambda + h^+$ and $\Lambda + h^-$ have opposite sign. The magnitude increases with higher $z_{\rm h}$.
- At large z_{Λ} , the differences between $\Lambda + h^+$ and $\Lambda + h^-$ reduce. Small deviations can still be seen and depend on $z_{\rm h}$.

- KEKB: asymmetric e⁺ (3.5 GeV) e⁻ (8 GeV) collider: $-\sqrt{s} = 10.58 \text{ GeV}, e^+e^- \rightarrow Y(nS) \rightarrow B/B + \text{ continuum}$ $-\sqrt{s} = 10.52 \text{ GeV}, e^+e^- \rightarrow qqbar (u,d,s,c) 'continuum'$
- Ideal (at the time) detector for high precision measurements:

 tracking acceptance θ [17 °;150°]: Azimuthally symmetric
 particle identification (PID): dE/dx, Cherenkov, ToF, EMcal, MuID
- $\Upsilon(5S)$ $\Upsilon(4S)$ $\Upsilon(3S)$ $\Upsilon(2S)$ $\Upsilon(1S)$ Scans/ Experiment | Off. Res. | 10876 MeV | 10580 MeV | 10355 MeV | 10023 MeV | 9460 MeV fb^{-1} fb^{-1} 10⁶ fb^{-1} 10⁶ fb^{-1} 10⁶ fb^{-1} 10^{6} fb^{-1} 10⁶ CLEO 0.117.10.41617.11.21.2101.2215BaBar 54 R_b scan 4334713012214 99_ Belle 367111001217723 12251581026

- Available data:
 - ~I ab⁻¹ total
 - ~1.8 *10⁹ events at 10.58 GeV,
 ~220 *10⁶ events at 10.52 GeV

