New results on low-energy exclusive hadronic cross sections from BABAR & implications for g-2 of the muon

J. William Gary U. California, Riverside

13th Conference on the Intersections of Particle and Nuclear Physics, May 29—June 3, 2018, Indian Wells, CA, USA

Outline

- g 2 of the muon
- BABAR and the initial-state radiation (ISR) method
- Recent exclusive hadronic cross section measurements
 - $e^{+}e^{-} \rightarrow \pi^{+}\pi^{-}\pi^{0}\pi^{0} \qquad PRD \ 96 \ (2017) \ 092009$
 - $e^+e^- \rightarrow \pi^+\pi^-\eta$ PRD 97 (2018) 052007
 - $e^+e^- \rightarrow K_S K_L \pi^0$, $K_S K_L \eta$, $K_S K_L \pi^0 \pi^0$ PRD 95 (2017) 052001
 - $e^+e^- \rightarrow K_S K^+\pi^-\pi^0$, $K_S K^+\pi^-\eta$ PRD 95 (2017) 092005
- Implications for the muon g 2
- Summary

The muon g-2 discrepancy

- Magnetic moment of a spin ½ particle: $\vec{\mu} = g \frac{e}{2mc} \vec{s}$
- Dirac equation predicts g = 2 exactly
- Radiative corrections alter the prediction, introducing sensitivity to new physics through loops: g = 2(1+a)
- The "anomalous" moment: $a = \frac{g-2}{2}$

- For the muon, there is a tension on the order of 3.5 standard deviations
 - \rightarrow the muon g-2 discrepancy

LO hadronic contribution to a_u^{had} ,

- Use sum of measured exclusive channels: 2π , 3π , 4π , KK, KK π , KK $\pi\pi$, $\eta\pi$, ...
- Use isospin relations for missing channels
- Above ~1.8 GeV can start to use pQCD or inclusive $\sigma(e^+e^- \rightarrow hadrons)$ data
- BABAR has a long-standing program to measure exclusive cross sections below 2 GeV for all possible exclusive hadronic final states

The BABAR experiment at SLAC

- PEP-II rings: asymmetric e⁺e⁻ collider @ **SLAC** 9 GeV e⁻ and 3.1 GeV e⁺
- Collected data 1999-2008
- Data analysis still active (5 papers submitted so far in 2018; 6 in 2017)

The BABAR experiment at SLAC

- Primarily designed to study CP violation in B meson decays
- Its general purpose design makes it suitable for a wide variety of other studies

The analyses presented here use ~470 fb⁻¹ of data collected at $Vs \approx 10.6$ GeV

ISR method to measure low energy cross sections

$$e^{-(9\text{GeV})}$$

 $\sqrt{s'} = E_{CM}$ hadrons
 $e^{+}(3\text{GeV})$

- Photon emitted by the incoming e⁺ or e⁻: initial-state radiation (ISR)
- γ_{ISR} is γ with highest E_{CM} & with $E_{CM} > 3$ GeV
- Final-state photon radiation rate is negligible
- High event acceptance (the hadrons are strongly boosted), easily recognizable
- Can access a wide range of energies Vs' in a single experiment: from threshold to ~5 GeV; eliminate point-to-point systematic uncertainties arising in a Vs scan

ISR method to measure low energy cross sections

- Study of the intermediate resonance structure in low-energy <u>e⁺e⁻ → hadrons</u> data is also interesting
- Sheds light on the production process of hadrons
- Can be used to test models of hadron production
- Knowledge of the resonance structure significantly reduces systematic uncertainties in the acceptance since the acceptance differs for different intermediate states → incorporate information into the MC simulations

(I) $e^+e^- \rightarrow \pi^+\pi^-\pi^0\pi^0$

PRD 96 (2017) 092009

- One of the least known cross sections important for a^{had,LO}
- The new results supersede preliminary BABAR results from 2007, which were based on only half the final data set
- Require exactly 2 charged tracks, an ISR photon candidate, \geq 4 other photons
- Perform kinematic fit to the $e^+e^- \rightarrow \pi^+\pi^-\pi^0\pi^0\gamma$ hypothesis, constraining two 2γ combinations to the π^0 mass
- Select the overall combination of four photons yielding the smallest $\chi_{4\pi\gamma}^2$, requiring $\chi_{4\pi\gamma}^2 < 30$
- Difference between the $\chi_{4\pi\gamma}^{2}$ distributions of data and signal MC due to background in the former

(I) $e^+e^- \rightarrow \pi^+\pi^-\pi^0\pi^0$

PRD 96 (2017) 092009

Background subtracted using simulation normalized to data

Cross check using a data sideband method

Largest ISR background: $\pi^+\pi^-3\pi^0\gamma_{ISR}$

- Cross section not well measured; only previous measurement is from 1979
- Perform new measurement using similar techniques to those used for the $\pi^+\pi^-\pi^0\pi^0$ cross section
- Obtain reliable background estimate, adjusting the shape and normalization of $e^+e^- \rightarrow \pi^+\pi^-3\pi^0$ in the simulation

(I) $e^+e^- \rightarrow \pi^+\pi^-\pi^0\pi^0$

PRD 96 (2017) 092009

Intermediate resonances: a large fraction of $e^+e^- \rightarrow \pi^+\pi^-\pi^0\pi^0$ proceeds through $e^+e^- \rightarrow \omega\pi^0$ with $\omega \rightarrow \pi^+\pi^-\pi^0$

BABAR results more precise than those from previous experiments; cover wider energy range; resolve some discrepancies

(I) $e^+e^- \rightarrow \pi^+\pi^-\pi^0\pi^0$

PRD 96 (2017) 092009

- BABAR results (150,000 signal events)
 - far more precise
 - cover far wider energy range
- Result for $a_{\mu}^{\pi+\pi-\pi0\pi0}$ (E_{CM} < 1.8 GeV): 179 ± 1(stat) ± 6(syst) x 10⁻¹¹ (3.2% precision)
- World average without BABAR: 167 ± 13 (stat+syst) x 10⁻¹¹ (7.9% precision)
- The BABAR data reduce uncertainty in $a_{\mu}^{\pi+\pi-\pi0\pi0}$ by a factor of 2.5

- Similar analysis techniques to $e^+e^- \rightarrow \pi^+\pi^-\pi^0\pi^0$; 8000 signal events
- Complements and improves the precision of the BABAR result from 2007 [PRD 76 (2007) 092005], based on 232 fb⁻¹ and the $\eta \rightarrow \pi^+\pi^-\pi^0$ decay mode
- Reaction dominated ρ (770) η intermediate state, but has complex E_{CM} structure

(III) $e^+e^- \rightarrow K_S K_I \pi^0$

Phys. Rev. D 95 (2017) 052001

- 3700 signal events
- First measurement of this process
- First observation of $J/\psi \rightarrow K_S K_L \pi^0$
- Dominant intermediate state (95%) is K*(892)K
- K*(1430)K and $\phi(\rightarrow K_{S}K_{L})\pi^{0}$ also seen

(IV) $e^+e^- \rightarrow K_S K_L \eta$

Phys. Rev. D 95 (2017) 052001

• 864 signal events

• Dominated by $e^+e^- \rightarrow \phi \eta$

First measurement of this process

(V) $e^+e^- \rightarrow K_S K_L \pi^0 \pi^0$

Phys. Rev. D 95 (2017) 052001

- 392 signal events
- First measurement of this process
- Clear $e^+e^- \rightarrow K^*(892)K\pi$ signals

(VI) $e^+e^- \rightarrow K_s K^+\pi^-\pi^0$

Phys. Rev. D 95 (2017) 092005

hatched areas = nonresonant components

- 6400 signal events, first measurement of this process
- Large J/ $\psi \rightarrow K_s K^+ \pi^- \pi^0$ peak (first observation of this decay)
- K*(892)K π and K_sK⁺ ρ (770)⁻ are dominant
- K*(892)K*(892) ~ 15%; small K*(1430)Kπ component •

1.5

1.1

 $m(K^{+-}\pi^{0}) (GeV/c^{2})$

1.3

0.6 0.7 0.8 0.9

(VII) $e^+e^- \rightarrow K_S K^+\pi^-\eta$

Phys. Rev. D 95 (2017) 092005

- 358 signal events
- First measurement of this process
- Dominated by K*(892)K η peak, primarily in K*(892)[±] \rightarrow K_S π^{\pm}

Implications for the muon g - 2

- With the new results for
 - $e^+e^- \rightarrow K_S K_L \pi^0 \qquad \text{PRD95 (2017) 052001}$
 - $e^+e^- \rightarrow K_S K^+ \pi^- \pi^0$ PRD95 (2017) 092005
 - $e^+e^- \rightarrow K_S K_L \pi^0 \pi^0$
- PRD95 (2017) 052001

in combination with previous BABAR results, BABAR has now measured <u>all</u>

- − $e^+e^- \rightarrow KK\pi$
- e⁺e⁻ → KKππ

cross sections except those with a $K_L K_L$

• $a_{\mu}^{KK\pi}$ and $a_{\mu}^{KK\pi\pi}$ can be determined with no assumptions or isospin relations (except assume the K_LK_L rates to be the same as for K_SK_S)

From V.P. Druzhinin, EPJ Web of Conferences 142, 01013 (2017)

Implications for the muon g - 2

- KK $\pi\pi$ states comprise ~25% of the total hadronic cross section at $E_{CM} \approx 2 \text{ GeV}$
- Can be used, along with the other BABAR measurements at E_{CM} ≈ 2 GeV, to test the pQCD prediction for e⁺e⁻ → hadrons
- The BABAR results yield ($E_{CM} < 1.8$ GeV) $a_{\mu}^{KK\pi\pi} = 8.5 \pm 0.5$ (stat+syst) x 10⁻¹¹ (6% precision)
- Previous result, based mostly on isospin relations: 30% precision

From V.P. Druzhinin, EPJ Web of Conferences 142, 01013 (2017)

Implications for the muon g - 2

Summary of BABAR ISR results

- Plots don't yet contain all the latest results
- Discrepancy of up to 3% between BABAR and KLOE in the all-important $\pi^+\pi^-$ channel
- New BABAR analysis on π⁺π⁻ with reduced systematics and 8 times more data expected around the end of 2018

Summary

- Low-energy e⁺e⁻ → hadrons cross section data currently provide the most accurate prediction for a_µ^{had,LO}
- The $e^+e^- \rightarrow hadrons$ data also
 - yield important information on hadron dynamics
 - − allow tests of QCD, including for $\sigma(e^+e^- \rightarrow hadrons)$ at E_{CM} ≈ 2 GeV
 - provide first observations of cross sections and of (for example) J/ψ and ψ (2S) branching fractions
- New BABAR results reduce the uncertainty in $a_u^{had,LO}$
 - $e^+e^- \rightarrow \pi^+\pi^-\pi^0\pi^0$ from around 7% to around 3%
 - $e^+e^- \rightarrow KK\pi\pi$ from around 30% to around 6%
- Future progress in a_μ^{had,LO} will come from reduced systematic uncertainties in e⁺e⁻ → π⁺π⁻ (BABAR and CMD3) and perhaps eventually lattice QCD

EXTRA

$g_{\mu}\text{-}$ 2 in the standard model

• The longstanding tension between theory and data for the muon g-2 could be an indication of new physics

- The Muon g-2 experiment at Fermilab, with data collection starting in Fall 2017, hopes to reduce the experimental uncertainty by a factor of 4 by around 2019
- Similar goal on a somewhat longer time scale (2022 ??) by the J-PARC E34 experiment
- The limiting factor in the theoretical prediction for g 2 is the uncertainty In the <u>leading-order hadronic term</u>

ISR method to measure low energy cross sections

The measured radiative crosshadronssection is then interpreted in termsof nonradiative cross section

$$\frac{d\sigma_{\gamma f}(s,x)}{dx} = W(s,x)\sigma_f(E_{\text{c.m.}})$$

W (s,x) = radiator function

 probability for the initial e⁺ or e⁻ to radiate a photon, lowering the annihilation energy from √s to E_{CM} (calculated in QED to better than 0.5% accuracy)

 $E_{CM} = V(1-x)s = invariant mass of the hadronic system$

x = 2
$$E_{\gamma}/Vs$$
; E_{γ} measured in CM frame

(II) $e^+e^- \rightarrow \pi^+\pi^-\eta$ with $\eta \rightarrow \gamma\gamma$

Preliminary

model	Resonance model	Good fit for
0	ho(770) + $ ho$ (1450)	Doesn't fit
1	ρ(770) – ρ(1450)	E _{cm} < 1.7 GeV
2	ρ(770) – ρ(1450) – ρ(1700)	E _{cm} < 1.9 GeV
3	ho(770) - ho(1450) + ho(1700)	E _{cm} < 1.9 GeV
4	$\rho(770) - \rho(1450) + \rho(1700) + \rho(2150)$	E _{cm} < 2.2 GeV

- Coupling constants governing the decays ~real: phase differences are 0 or π only
- Need an additional resonance to describe data above E_{cm}= 2.3 GeV