

CHRIS MURPHY

EFT FOR HIGGS PHYSICS

John Ellis, CM, Verónica Sanz, & Tevong You: 1803.03252

HIGGS PHYSICS

- Many good measurements at LHC
- No evidence of BSM physics
- ▶ ∧ ~ TeV

EFFECTIVE FIELD THEORY

- Most useful when UV and IR scales are well-separated $\mathcal{L}_{EFT} = \sum_{n,i} \frac{c_i^{(n)}}{\Lambda^n} \mathcal{O}_i^{(n)}(x)$
- EFT is a full-fledged QFT provided one works to finite order in Λ
 - No reference to or input from UV physics needed
 - Advantages over ad-hoc BSM parameterization

STANDARD MODEL EFFECTIVE FIELD THEORY

Given SM particle content, write down all terms allowed by SM symmetries...

…including higher-dimensional operators

$$\mathcal{L}_{\rm SM}^{\rm dim-6} = \sum_{i} \frac{c_i}{\Lambda^2} \mathcal{O}_i$$

NEXT-GENERATION ANALYSIS

- Previously assumed:
 - EWPD >> diboson >> Higgs
- No longer justified, theoretically unsatisfactory
- Kinematic information encoded in Simplified Template Cross Sections (STXS)

SIMPLIFIED TEMPLATE CROSS SECTIONS

ANALYSIS FRAMEWORK

Focus on leading dimension-6 operators

$$\mathcal{L}_{\text{SMEFT}} \supset \mathcal{L}_{\text{SM}} + \sum_{i} \frac{c_i}{\Lambda_i^2} \mathcal{O}_i$$

- Work to linear order in Wilson coefficients
- Impose U(3)⁵ symmetry, broken by SM Yukawas
- Use α_{EM} , G_F , M_Z , as input parameters

DIMENSION-6 OPERATORS IN WARSAW BASIS

$$\bar{C} \equiv \frac{v^2}{\Lambda^2} C$$

$$\begin{split} \mathcal{L}_{\text{SMEFT}}^{\text{Warsaw}} &\supset \frac{\bar{C}_{Hl}^{(3)}}{v^2} (H^{\dagger}i\overleftrightarrow{D}_{\mu}^{I}H)(\bar{l}\tau^{I}\gamma^{\mu}l) + \frac{\bar{C}_{Hl}^{(1)}}{v^2} (H^{\dagger}i\overleftrightarrow{D}_{\mu}H)(\bar{l}\gamma^{\mu}l) + \frac{\bar{C}_{ll}}{v^2}(\bar{l}\gamma_{\mu}l)(\bar{l}\gamma^{\mu}l) \\ &\quad + \frac{\bar{C}_{HD}}{v^2} \left| H^{\dagger}D_{\mu}H \right|^2 + \frac{\bar{C}_{HWB}}{v^2} H^{\dagger}\tau^{I}H W_{\mu\nu}^{I}B^{\mu\nu} \\ &\quad + \frac{\bar{C}_{He}}{v^2} (H^{\dagger}i\overleftrightarrow{D}_{\mu}H)(\bar{e}\gamma^{\mu}e) + \frac{\bar{C}_{Hu}}{v^2} (H^{\dagger}i\overleftrightarrow{D}_{\mu}H)(\bar{u}\gamma^{\mu}u) + \frac{\bar{C}_{Hd}}{v^2} (H^{\dagger}i\overleftrightarrow{D}_{\mu}H)(\bar{d}\gamma^{\mu}d) \\ &\quad + \frac{\bar{C}_{Hq}^{(3)}}{v^2} (H^{\dagger}i\overleftrightarrow{D}_{\mu}^{I}H)(\bar{q}\tau^{I}\gamma^{\mu}q) + \frac{\bar{C}_{Hq}^{(1)}}{v^2} (H^{\dagger}i\overleftrightarrow{D}_{\mu}H)(\bar{q}\gamma^{\mu}q) + \frac{\bar{C}_{W}}{v^2} \epsilon^{IJK} W_{\mu}^{I\nu} W_{\nu}^{J\rho} W_{\rho}^{K\mu} \end{split}$$

$$\begin{split} \mathcal{L}_{\text{SMEFT}}^{\text{Warsaw}} &\supset \frac{\bar{C}_{eH}}{v^2} y_e (H^{\dagger}H)(\bar{l}eH) + \frac{\bar{C}_{dH}}{v^2} y_d (H^{\dagger}H)(\bar{q}dH) + \frac{\bar{C}_{uH}}{v^2} y_u (H^{\dagger}H)(\bar{q}u\tilde{H}) \\ &+ \frac{\bar{C}_G}{v^2} f^{ABC} G^{A\nu}_{\mu} G^{B\rho}_{\nu} G^{C\mu}_{\rho} + \frac{\bar{C}_{H\Box}}{v^2} (H^{\dagger}H) \Box (H^{\dagger}H) + \frac{\bar{C}_{uG}}{v^2} y_u (\bar{q}\sigma^{\mu\nu}T^A u) \tilde{H} G^A_{\mu\nu} \\ &+ \frac{\bar{C}_{HW}}{v^2} H^{\dagger}H W^I_{\mu\nu} W^{I\mu\nu} + \frac{\bar{C}_{HB}}{v^2} H^{\dagger}H B_{\mu\nu} B^{\mu\nu} + \frac{\bar{C}_{HG}}{v^2} H^{\dagger}H G^A_{\mu\nu} G^{A\mu\nu} \,. \end{split}$$

results of EMSY 1803.03252 expressed in both SILH and Warsaw bases

PRECISION ELECTROWEAK MEASUREMENTS USED IN SMEFT FIT

- 12 Z-pole measurements
- 74 LEP 2 W+Wmeasurements
- New M_W measurement from ATLAS
- Probes 11 SMEFT directions

Observable	Measurement	Ref.	SM Prediction	Ref.
$\blacktriangleright \Gamma_Z \; [\text{GeV}]$	2.4952 ± 0.0023	[41]	2.4943 ± 0.0005	[40]
$\sigma_{ m had}^0 \; [{ m nb}]$	41.540 ± 0.037	[41]	41.488 ± 0.006	[40]
R^0_ℓ	20.767 ± 0.025	[41]	20.752 ± 0.005	[40]
$A_{ m FB}^{0,\ell}$	0.0171 ± 0.0010	[41]	0.01622 ± 0.00009	[118]
$\mathcal{A}_{\ell}\left(P_{\tau} ight)$	0.1465 ± 0.0033	[41]	0.1470 ± 0.0004	[118]
$\mathcal{A}_{\ell}\left(\mathrm{SLD} ight)$	0.1513 ± 0.0021	[41]	0.1470 ± 0.0004	[118]
R_b^0	0.021629 ± 0.00066	[41]	0.2158 ± 0.00015	[40]
R_c^0	0.1721 ± 0.0030	[41]	0.17223 ± 0.00005	[40]
$A_{ m FB}^{0,b}$	0.0992 ± 0.0016	[41]	0.1031 ± 0.0003	[118]
$A^{0,c}_{ m FB}$	0.0707 ± 0.0035	[41]	0.0736 ± 0.0002	[118]
\mathcal{A}_b	0.923 ± 0.020	[41]	0.9347	[118]
\mathcal{A}_c	0.670 ± 0.027	[41]	0.6678 ± 0.0002	[118]
$M_W \; [{ m GeV}]$	80.387 ± 0.016	[42]	80.361 ± 0.006	[118]
$M_W \; [{ m GeV}]$	80.370 ± 0.019	[98]	80.361 ± 0.006	[118]

ATLAS+CMS HIGGS DATA FROM RUN 1

Production	Decay	Signal Strength	Production	Decay	Signal Strength
$gg\mathrm{F}$	$\gamma\gamma$	$1.10\substack{+0.23\\-0.22}$	Wh	au au	-1.4 ± 1.4
$gg\mathrm{F}$	ZZ	$1.13^{+0.34}_{-0.31}$	Wh	bb	1.0 ± 0.5
$gg\mathrm{F}$	WW	0.84 ± 0.17	Zh	$\gamma\gamma$	$0.5\substack{+3.0 \\ -2.5}$
$gg\mathrm{F}$	au au	1.0 ± 0.6	Zh	WW	$5.9^{+2.6}_{-2.2}$
VBF	$\gamma\gamma$	1.3 ± 0.5	Zh	au au	$2.2^{+2.2}_{-1.8}$
VBF	ZZ	$0.1^{+1.1}_{-0.6}$	Zh	bb	0.4 ± 0.4
VBF	WW	1.2 ± 0.4	tth	$\gamma\gamma$	$2.2^{+1.6}_{-1.3}$
VBF	au au	1.3 ± 0.4	tth	WW	$5.0^{+1.8}_{-1.7}$
Wh	$\gamma\gamma$	$0.5^{+1.3}_{-1.2}$	tth	au au	$-1.9^{+3.7}_{-3.3}$
Wh	WW	$1.6^{+1.2}_{-1.0}$	tth	bb	1.1 ± 1.0
pp	$Z\gamma$	$2.7^{+4.6}_{-4.5}$	pp	$\mu\mu$	0.1 ± 2.5

RUN 2 HIGGS MEASUREMENTS USED IN SMEFT FIT

 Include all available kinematical information

- Include 1 W+Wmeasurement at high p_T
- Probe 13 SMEFT directions

new: Moriond EW '18

	Production	Decay	Sig. Stren.		Production	Decay	Sig. Stren.
102	1-jet, $p_T > 450$	$b\bar{b}$	$2.3^{+1.8}_{-1.6}$	[110]	pp	$\mu\mu$	-0.1 ± 1.5
103	Zh	$b\bar{b}$	0.9 ± 0.5	[111]	Zh	$b\bar{b}$	$1.12^{+0.50}_{-0.45}$
103	Wh	$b ar{b}$	1.7 ± 0.7	[111]	Wh	$b\overline{b}$	$1.35_{-0.59}^{+0.68}$
104	$t\bar{t}h, \ge 1\ell$	$b\overline{b}$	0.72 ± 0.45	[112]	$t\bar{t}h$	$b\bar{b}$	$0.84_{-0.61}^{+0.64}$
105	$t\bar{t}h$	$1\ell + 2\tau_h$	$-1.52^{+1.76}_{-1.72}$	[113]	$t\bar{t}h$	$2\ell os + 1\tau_h$	$1.7^{+2.1}_{-1.9}$
105	$t\bar{t}h$	$2\ell ss + 1\tau_h$	$0.94_{-0.67}^{+0.80}$	[113]	$t\bar{t}h$	$1\ell + 2\tau_h$	$-0.6^{+1.6}_{-1.5}$
105	$t\bar{t}h$	$3\ell + 1\tau_h$	$1.34^{+1.42}_{-1.07}$	[113]	$t\bar{t}h$	$3\ell + 1\tau_h$	$1.6^{+1.8}_{-1.3}$
105	$t\bar{t}h$	$2\ell ss$	$1.61^{+0.58}_{-0.51}$	[113]	$t\bar{t}h$	$2\ell ss + 1\tau_h$	$3.5^{+1.7}_{-1.3}$
105	$t\bar{t}h$	3ℓ	$0.82^{+0.77}_{-0.71}$	[113]	$t\bar{t}h$	3ℓ	$1.8^{+0.9}_{-0.7}$
105	$t\bar{t}h$	4ℓ	$0.9^{+2.3}_{-1.6}$	[113]	$t\bar{t}h$	$2\ell ss$	$1.5^{+0.7}_{-0.6}$
106	0-jet DF	WW	$1.30^{+0.24}_{-0.23}$	[114]	$gg\mathrm{F}$	WW	$1.21^{+0.22}_{-0.21}$
106	1-jet DF	WW	$1.29^{+0.32}_{-0.27}$	[114]	VBF	WW	$0.62^{+0.37}_{-0.36}$
106	2-jet DF	WW	$0.82^{+0.54}_{-0.50}$	[115]	$B(h \to \gamma \gamma)/B(h$	$\rightarrow 4\ell)$	$0.69^{+0.13}_{-0.13}$
106	VBF 2-jet	WW	$0.72^{+0.44}_{-0.41}$	[115]	0-jet	4ℓ	$1.07^{+0.27}_{-0.25}$
106	Vh 2-jet	WW	$3.92^{+1.32}_{-1.17}$	[115]	1-jet, $p_T < 60$	4ℓ	$0.67^{+0.72}_{-0.68}$
106	Wh 3-lep	WW	$2.23^{+1.76}_{-1.53}$	[115]	1-jet, $p_T \in (60, 120)$	4ℓ	$1.00^{+0.63}_{-0.55}$
107	ggF	$\gamma\gamma$	$1.10^{+0.20}_{-0.18}$	[115]	1-jet, $p_T \in (120, 200)$	4ℓ	$2.1^{+1.5}_{-1.3}$
107	VBF	$\gamma\gamma$	$0.8^{+0.6}_{-0.5}$	[115]	2-jet	4ℓ	$2.2^{+1.1}_{-1.0}$
107	$t\bar{t}h$	$\gamma\gamma$	$2.2^{+0.9}_{-0.8}$	[115]	"BSM-like"	4ℓ	$2.3^{+1.2}_{-1.0}$
107	Vh	$\gamma\gamma$	$2.4^{+1.1}_{-1.0}$	115	VBF, $p_T < 200$	4ℓ	$2.14_{-0.77}^{+0.94}$
108	ggF	4ℓ	$1.20_{-0.21}^{+0.22}$	115	Vh lep	4ℓ	$0.3^{+1.3}_{-1.2}$
109	0-jet	au au	0.84 ± 0.89	[115]	$t\bar{t}h$	4ℓ	$0.51_{-0.70}^{+0.86}$
109	boosted	au au	$1.17\substack{+0.47\\-0.40}$	[116]	Wh	WW	$3.2^{+4.4}_{-4.2}$
109	VBF	au au	$1.11_{-0.35}^{+0.34}$				
106	Zh 4-lep	WW	$0.77^{+1.49}$				

λτι λς

CONSTRAINTS ON OBLIQUE PARAMETERS

GLOBAL FIT RESULTS

	Theory	χ^2	$\chi^2/n_{ m d}$	<i>p</i> -value
	SM	157	0.987	0.532
20 coefficients	SMEFT	137	0.987	0.528
13 coefficients	► SMEFT*	143	0.977	0.564

*assumes SMEFT is UV-completed by a renormalizable, weakly-coupled theory

FIT TO EACH OPERATOR INDIVIDUALLY

Note: different scaling factors

FIT TO ALL OPERATORS SIMULTANEOUSLY

Note: different scaling factors

C_{dH} C_{eH} C_G C_{HB} $C_{H\Box}$ $\frac{1}{2}$ C_{Hd} C_{HD} C_{He} C_{HG} $\begin{array}{c} C^{(1)}_{H\ell} \\ C^{(3)}_{H\ell} \\ C^{(1)}_{Hq} \\ C^{(3)}_{Hq} \end{array}$ 0 C_{Hu} C_{HW} C_{HWB} $-\frac{1}{2}$ $C_{\ell\ell}$ C_{uG} C_{uH} C_W $\begin{array}{c} C_{Hd} \\ C_{uH} \\ C_{uH$ $\begin{array}{c} C_{dH} \\ C_{eH} \\ C_{G} \\ C_{G} \\ C_{HB} \\ C_{HB} \end{array}$ -1

CORRELATION MATRIX

CORRELATION MATRIX

Brivio, Trott 1701.06424

SIMPLE EXTENSIONS OF THE SM

Name	Spin	SU(3)	SU(2)	U(1)	Name	Spin	SU(3)	SU(2)	U(1)
S	0	1	1	0	Δ_1	$\frac{1}{2}$	1	2	$-\frac{1}{2}$
\mathcal{S}_1	0	1	1	1	Δ_3	$\frac{1}{2}$	1	2	$-\frac{1}{2}$
φ	0	1	2	$\frac{1}{2}$	Σ	$\frac{1}{2}$	1	3	0
[1]	0	1	3	0	Σ_1	$\frac{1}{2}$	1	3	-1
Ξ_1	0	1	3	1	U	$\frac{1}{2}$	3	1	$\frac{2}{3}$
\mathcal{B}	1	1	1	0	D	$\frac{1}{2}$	3	1	$-\frac{1}{3}$
\mathcal{B}_1	1	1	1	1	Q_1	$\frac{1}{2}$	3	2	$\frac{1}{6}$
\mathcal{W}	1	1	3	0	Q_5	$\frac{1}{2}$	3	2	$-\frac{5}{6}$
\mathcal{W}_1	1	1	3	1	Q_7	$\frac{1}{2}$	3	2	$\frac{7}{6}$
N	$\frac{1}{2}$	1	1	0	T_1	$\frac{1}{2}$	3	3	$-\frac{1}{3}$
E	$\frac{1}{2}$	1	1	-1	T_2	$\frac{1}{2}$	3	3	$\frac{2}{3}$

de Blas, Criado, Perez-Victoria, Santiago 1711.10391

NUMERICAL CONSTRAINTS ON EXTENSIONS

improve $\chi^2 \& \chi^2/n_d$

only improve χ^2

improve neither

Model	χ^2	$\chi^2/n_{ m d}$	Coupling	Mass / TeV
SM	157	0.987	-	-
\mathcal{S}_1	156	0.986	$ y_{\mathcal{S}_1} ^2 = (6.3 \pm 5.9) \cdot 10^{-3}$	$M_{\mathcal{S}_1} = (9.0, 49)$
$\varphi,$ Type I	156	0.986	$Z_6 \cdot \cos\beta = -0.64 \pm 0.59$	$M_{\varphi} = (0.9, 4.3)$
[1]	155	0.984	$ \kappa_{\Xi} ^2 = (4.2 \pm 3.4) \cdot 10^{-3}$	$M_{\Xi} = (12, 35)$
N	155	0.978	$ \lambda_N ^2 = (1.8 \pm 1.2) \cdot 10^{-2}$	$M_N = (5.8, 13)$
\mathcal{W}_1	155	0.984	$\left \hat{g}_{\mathcal{W}_1}^{\phi}\right ^2 = (3.3 \pm 2.7) \cdot 10^{-3}$	$M_{\mathcal{W}_1} = (4.1, 13)$
E	157	0.993	$ \lambda_E ^2 < 1.2 \cdot 10^{-2}$	$M_E > 9.2$
Δ_3	156	0.990	$ \lambda_{\Delta_3} ^2 < 1.9 \cdot 10^{-2}$	$M_{\Delta_3} > 7.3$
Σ	157	0.992	$ \lambda_{\Sigma} ^2 < 2.9 \cdot 10^{-2}$	$M_{\Sigma} > 5.9$
Q_5	156	0.990	$ \lambda_{Q_5} ^2 < 0.18$	$M_{Q_5} > 2.4$
T_2	157	0.992	$ \lambda_{T_2} ^2 < 7.1 \cdot 10^{-2}$	$M_{T_2} > 3.8$
S	157	0.993	$\left y_{\mathcal{S}}\right ^2 < 0.32$	$M_{\mathcal{S}} > 1.8$
Δ_1	157	0.993	$ \lambda_{\Delta_1} ^2 < 5.7 \cdot 10^{-3}$	$M_{\Delta_1} > 13$
Σ_1	157	0.993	$ \lambda_{\Sigma_1} ^2 < 7.3 \cdot 10^{-3}$	$M_{\Sigma_1} > 12$
U	157	0.993	$ \lambda_U ^2 < 2.8 \cdot 10^{-2}$	$M_U > 6.0$
D	157	0.993	$ \lambda_D ^2 < 1.4 \cdot 10^{-2}$	$M_D > 8.4$
Q_7	157	0.993	$ \lambda_{Q_7} ^2 < 7.7 \cdot 10^{-2}$	$M_{Q_7} > 3.6$
T_1	157	0.993	$ \lambda_{T_1} ^2 < 0.13$	$M_{T_1} > 3.0$
\mathcal{B}_1	157	0.993	$\left \hat{g}_{\mathcal{B}_1}^{\phi} \right ^2 < 2.4 \cdot 10^{-3}$	$M_{\mathcal{B}_1} > 21$

← 2HDM

CONSTRAINTS ON SM EXTENSIONS

NON-RENORMALIZABLE MODELS

If UV model has both super-renormalizable and nonrenormalizable interactions

$$\mathcal{L} = \frac{1}{\Lambda} \left(a g_2^2 \sigma W^{a\,\mu\,\nu} \, W^a_{\mu\,\nu} + b g_1^2 \sigma B^{\mu\,\nu} B_{\mu\,\nu} + c g_1 g_2 \, \Sigma^a W^a_{\mu\,\nu} B^{\mu\,\nu} \right) + \Lambda \left(d \, H^\dagger H \sigma + f \, H^\dagger \tau^a H \Sigma_a \right)$$

Low energy EFT can have higher-dimensional operators w/ arbitrary coefficients

$$\mathcal{L} = \frac{ad}{m_\sigma^2} g_2^2 H^{\dagger} H \, W^{a\,\mu\nu} \, W^a_{\mu\nu} + \frac{bd}{m_\sigma^2} g_1^2 H^{\dagger} H \, B^{\mu\nu} B_{\mu\nu} + \frac{cf}{m_\Sigma^2} g_1 g_2 \, H^{\dagger} \tau^a H \, W^a_{\mu\nu} B^{\mu\nu}$$

see e.g. Jenkins, Manohar, Trott 1305.0017

NON-RENORMALIZABLE MODELS

Subset of models: explanations of muon g-2

$$E^{(5)}: C_{H\ell}^{(1)} = C_{H\ell}^{(3)}, \ \chi^2 = 157, \ \chi^2/n_d = 0.999.$$

$$\begin{pmatrix} \bar{C}_{eH} \\ \bar{C}_{H\ell}^{(3)} \end{pmatrix} = \begin{pmatrix} (-0.8 \pm 8.9) \cdot 10^{-2} \\ (-0.3 \pm 1.5) \cdot 10^{-4} \end{pmatrix}$$

$$\Delta_{1,3}^{(5)}: \ \chi^2 = 156, \ \chi^2/n_d = 0.996.$$

$$\begin{pmatrix} \bar{C}_{eH} \\ \bar{C}_{He} \end{pmatrix} = \begin{pmatrix} (-0.8 \pm 8.9) \cdot 10^{-2} \\ (-2.3 \pm 3.3) \cdot 10^{-4} \end{pmatrix}$$

$$\Sigma_1^{(5)}: \ C_{H\ell}^{(1)} = -3C_{H\ell}^{(3)}, \ \chi^2 = 155, \ \chi^2/n_d = 0.988.$$

$$\begin{pmatrix} \bar{C}_{eH} \\ \bar{C}_{H\ell} \end{pmatrix} = \begin{pmatrix} (-0.8 \pm 8.9) \cdot 10^{-2} \\ (-1.2 \pm 0.9) \cdot 10^{-2} \\ (-1.2 \pm 0.9) \cdot 10^{-4} \end{pmatrix}$$

NON-RENORMALIZABLE MODELS

Heavy scalar singlet

• $S^{(5)}$: $\chi^2 = 153, \, \chi^2/n_d = 1.00.$

$$\begin{pmatrix} 0.54\bar{C}_{H\Box} - 0.05\bar{C}_{HW} + 0.01\bar{C}_{HB} + 0.08\bar{C}_{eH} + 0.84\bar{C}_{uH} + 0.03\bar{C}_{dH} \\ -0.16\bar{C}_{H\Box} + 0.75\bar{C}_{eH} + 0.64\bar{C}_{dH} \\ 0.50\bar{C}_{H\Box} - 0.04\bar{C}_{HW} + 0.01\bar{C}_{HB} + 0.57\bar{C}_{eH} - 0.36\bar{C}_{uH} - 0.54\bar{C}_{dH} \\ 0.65\bar{C}_{H\Box} - 0.06\bar{C}_{HW} + 0.02\bar{C}_{HB} - 0.32\bar{C}_{eH} - 0.42\bar{C}_{uH} + 0.54\bar{C}_{dH} \\ 0.09\bar{C}_{H\Box} + 0.95\bar{C}_{HW} - 0.29\bar{C}_{HB} \\ 0.91\bar{C}_{HG} + 0.12\bar{C}_{HW} + 0.39\bar{C}_{HB} \\ -0.39\bar{C}_{HG} + 0.27\bar{C}_{HW} + 0.88\bar{C}_{HB} \end{pmatrix} = \begin{pmatrix} -0.03 \pm 0.18 \\ 0.11 \pm 0.11 \\ (-4.1 \pm 7.9) \cdot 10^{-2} \\ (8.0 \pm 6.0) \cdot 10^{-2} \\ (1.8 \pm 9.6) \cdot 10^{-3} \\ (1.7 \pm 1.4) \cdot 10^{-4} \\ (2.0 \pm 8.4) \cdot 10^{-5} \end{pmatrix}$$

SUMMARY

SUMMARY

- SMEFT: model-independent way to search for heavy, new physics
- This work is the first combined global analysis within the SMEFT of electroweak, diboson, and Higgs data
- Higgs measurements currently compete w/ EWPD

EFT DETAILS

tth production probes many coefficients not otherwise constrained by our dataset

 $C_{uG} \to C_{uG} + 0.006 C_{uW} + 0.002 C_{uB} - 0.13 C_{qu}^{(8)} + \text{ additional } \psi^4 \text{ operators}$

- Include only C_{uG} as it has the largest contribution
- Alternatively...
 - one could regularize the fit as in 1710.02008
 - add in top-quark measurements

SILH BASIS

$$\mathcal{L}_{\text{SMEFT}}^{\text{SILH}} \supset \frac{\bar{c}_W}{m_W^2} \frac{ig}{2} \left(H^{\dagger} \sigma^a \vec{D}^{\mu} H \right) D^{\nu} W_{\mu\nu}^a + \frac{\bar{c}_B}{m_W^2} \frac{ig'}{2} \left(H^{\dagger} \vec{D}^{\mu} H \right) \partial^{\nu} B_{\mu\nu} + \frac{\bar{c}_T}{v^2} \frac{1}{2} \left(H^{\dagger} \vec{D}_{\mu} H \right)^2 \\
+ \frac{\bar{c}_{ll}}{v^2} (\bar{L} \gamma_{\mu} L) (\bar{L} \gamma^{\mu} L) + \frac{\bar{c}_{He}}{v^2} (iH^{\dagger} \vec{D}_{\mu} H) (\bar{e}_R \gamma^{\mu} e_R) + \frac{\bar{c}_{Hu}}{v^2} (iH^{\dagger} \vec{D}_{\mu} H) (\bar{u}_R \gamma^{\mu} u_R) \\
+ \frac{\bar{c}_{Hd}}{v^2} (iH^{\dagger} \vec{D}_{\mu} H) (\bar{d}_R \gamma^{\mu} d_R) + \frac{\bar{c}'_{Hq}}{v^2} (iH^{\dagger} \sigma^a \vec{D}_{\mu} H) (\bar{Q}_L \sigma^a \gamma^{\mu} Q_L) \\
+ \frac{\bar{c}_{Hq}}{v^2} (iH^{\dagger} \vec{D}_{\mu} H) (\bar{Q}_L \gamma^{\mu} Q_L) + \frac{\bar{c}_{HW}}{m_W^2} ig (D^{\mu} H)^{\dagger} \sigma^a (D^{\nu} H) W_{\mu\nu}^a + \frac{\bar{c}_{HB}}{m_W^2} ig' (D^{\mu} H)^{\dagger} (D^{\nu} H) B_{\mu\nu} \\
+ \frac{\bar{c}_{3W}}{m_W^2} g^3 \epsilon_{abc} W_{\mu}^{a\nu} W_{\nu\rho}^b W^{c\rho\mu} + \frac{\bar{c}_g}{m_W^2} g_s^2 |H|^2 G_{\mu\nu}^A G^{A\mu\nu} + \frac{\bar{c}_\gamma}{m_W^2} g'^2 |H|^2 B_{\mu\nu} B^{\mu\nu} \\
+ \frac{\bar{c}_H}{v^2} \frac{1}{2} (\partial^{\mu} |H|^2)^2 + \sum_{f=e,u,d} \frac{\bar{c}_f}{v^2} y_f |H|^2 \bar{F}_L H^{(c)} f_R \\
+ \frac{\bar{c}_{3G}}{m_W^2} g_s^3 f_{ABC} G_{\mu}^{A\nu} G_{\nu}^{B\rho} G_{\rho}^{C\mu} + \frac{\bar{c}_{uG}}{m_W^2} g_s y_u \bar{Q}_L H^{(c)} \sigma^{\mu\nu} \lambda_A u_R G_{\mu\nu}^A.$$
(6)

ONE COEFFICIENT AT A TIME

GLOBAL FITS IN THE SILH BASIS

GLOBAL FITS IN THE SILH BASIS

PROJECTIONS FOR HL- AND HE-LHC

- Study ongoing looking at LHC 13/14 TeV vs. 27 TeV
 - https://twiki.cern.ch/twiki/bin/view/LHCPhysics/ HLHELHCWorkshop
- "It's difficult to make predictions, especially about the future" Yogi Berra

PROJECTION STRATEGY

- For each LHC Run-2 measurement used in the fit of 1803.03252
 - Set central value to SM prediction
 - Scale all uncertainties for the *i*th measurement by...

HL-LHC: $\sqrt{\frac{L_i}{3/ab}}$ most measurements currently have $L_i \sim 36/fb$ HE-LHC: $\sqrt{\frac{\sigma_{13,i}}{\sigma_{27,i}} \frac{L_i}{15/ab}}$

Leave correlations unchanged

PROJECTION: ONE COEFFICIENT AT A TIME

PROJECTION: ALL COEFFICIENTS SIMULTANEOUSLY

- Current Bounds
- HL-LHC projection 3/ab
- HE-LHC projection 15/ab