

HADRON MULTIPLICITY AND FRAGMENTATION IN SIDIS

Nicolas Pierre (CEA/IRFU Saclay, Johannes-Gutenberg Universität Mainz) May 31, 2018 – CIPANP'18

QUARK FRAGMENTATION FUNCTIONS

- FFs : + Non-perturbative objects, needed to describe several processes
 - Strange quark FF : largest uncertainty in Δs extraction from polarized SIDIS. Data in e⁺e⁻/pp reaction but insufficient and at too high Q².
 - → Measure hadron multiplicities in SIDIS : $IN \rightarrow I'hX$, $h=\pi,K,p$

$$\frac{dM^{h}(x,Q^{2},z)}{dz} \stackrel{LO}{=} \frac{\sum_{q} e_{q}^{2} q(x,Q^{2}) D_{q}^{h}(z,Q^{2})}{\sum_{q} e_{q}^{2} q(x,Q^{2})}$$

PDFs depend on x, while FFs depend on z.

 \rightarrow With kaons, access typically : $s(x,Q^2).D_s^{k}(z,Q^2)$

$$z = \frac{E_h}{v} = \frac{E_h}{E_\mu - E_{\mu'}}$$

→ π and K multiplicities allow to do global NLO QCD analyses to extract quark FFs.

→ Strangeness is contained in K

HERMES Π AND K DATA IN (Q²,Z) BINS

Nicolas Pierre – Hadron Multiplicity and Fragmentation in SIDIS

May 31, 2018 - CIPANP'18

COMPASS IT AND K DATA IN (X,Y,Z) BINS

- + More than 1200 points in total, strong z dependence
- $M^{\pi_+} \sim M^{\pi_-}$ and $M^{K_+} > M^{K_-}$

PLB 764 (2017) 001 PLB 767 (2017) 133

FROM MULTIPLICITIES TO QUARK FFS

<u> → Pions</u>

COMPASS LO fits assuming 2 independent FFs : D_{fav}^{π} and D_{unf}^{π}

 \rightarrow Kaons COMPASS LO fits assuming 3 independent FFs : D_{fav}^{K} , D_{unf}^{K} and D_{str}^{K}

- + LO fit not conclusive, difficulties fitting high z data even at NLO (see later)
- ◆ DSS17 NLO fit : half of COMPASS data -> Smaller D_s^K than previously
 → iterative study of strange PDF and FF : BSS Phys. Rev. D 96 (2017) 094020
- Some constrains on FFs from K⁺+K⁻ multiplicity sum

SUM OF Z-INTEGRATED MULTIPLICITIES (PIONS)

For an isoscalar target :

PLB 764 (2017) 001

Cea

IG

$$M^{\pi^{+}+\pi^{-}} = D_{fav}^{\pi} + D_{unf}^{\pi} - \frac{2(s(x) + \overline{s}(x))(D_{fav}^{\pi} - D_{unf}^{\pi})}{5(u(x) + d(x) + \overline{u}(x) + \overline{d}(x)) + 2(s(x) + \overline{s}(x))} \stackrel{high \ x}{=} D_{fav}^{\pi} + D_{unf}^{\pi}$$

COMPASS pion data significantly below HERMES ones
 No x dependence for COMPASS pion data as in EMC hadron data

SUM OF Z-INTEGRATED MULTIPLICITIES (KAONS)

For an isoscalar target :

Cea

PLB 767 (2017) 133

+ At high x, S~0 :

From COMPASS : $D_Q^K \sim 0.7$ From DSS fit : $D_Q^K \sim 0.43 \pm 0.04$

• At low x, $D_{str}K > D_{fav}K$:

Weak Q^2 dependance for D_Q^K , no rise in kaon multiplicity sum at low x.

COMPASS kaon data significantly above HERMES ones
 Smaller D_S^K and larger D_Q^K than previous NLO fits

COMMENTS ON QED RADIATIVE CORRECTIONS

In the COMPASS paper of kaon multiplicities :

- + Inclusive corrections (Muon, denominator) : TERAD
- Semi-Inclusive corrections (Kaon, numerator) : TERAD minus elastic and quasielastic tails.

TERAD gives z-integrated semi-inclusive corrections thus overestimates the correction.

 \rightarrow Conservative approach : correction calculated from two extreme cases (full and no corrections to the number of kaons) ; half of the correction is applied to multiplicities.

→ Overall correction between 1% and 7% depending on kinematics

Ongoing work in COMPASS : use Djangoh which account for z-dependence

- + For muons, agreement Djangoh / TERAD within 3%
- + For kaons, correction between 0% and 10% depending on kinematics, average at 5%

 \rightarrow Djangoh corrections within the systematic errors in the publication

.

In multiplicity ratio, cancellation of several experimental and theoretical uncertainties. In LO pQCD, a limit of the ratio is :

$$R_{K}(x,Q^{2},z) = \frac{\frac{dM^{K^{-}}(x,Q^{2},z)}{dz}}{\frac{dM^{K^{+}}(x,Q^{2},z)}{dz}} = \frac{4(\overline{u}+\overline{d})D_{fav}^{K^{-}} + (5(u+d)+\overline{u}+\overline{d}+s+\overline{s})D_{unf}^{K^{-}} + (s+\overline{s})D_{str}^{K^{-}}}{4(u+d)D_{fav}^{K^{+}} + (5(\overline{u}+\overline{d})+u+d+s+\overline{s})D_{unf}^{K^{+}} + (s+\overline{s})D_{str}^{K^{+}}}$$

At large z, D_{unf}^{K} is expected to be small :

$$R_{K}(x,Q^{2},z) = \frac{4(\overline{u}+\overline{d})D_{fav}^{K^{-}} + (s+\overline{s})D_{str}^{K^{-}}}{4(u+d)D_{fav}^{K^{+}} + (s+\overline{s})D_{str}^{K^{+}}}$$

Since $(s+\overline{s})D_{str}^{K}$ is positive, it can be neglected for limit calculation :

$$R_{_{K}} > \frac{\overline{u} + d}{u + d}$$

THEORY AND MODEL PREDICTION

Several expectations for R_K with LO pQCD limit :

May 31, 2018 - CIPANP'18

RESULTS

- ★ Results for x < 0.05 and x > 0.05.
- + R_K can be fitted by a simple functional form eg. $(1-z)^{\beta}$.
- + D_K (double ratio of R_K in the two x-bins) is flat within uncertainties.

RESULTS VS PREDICTIONS

+ Clear disagreement with models and LO/NLO limit observed (same holds for high x).

$R_{\text{K}} \text{ and } \nu$ dependence

- + A clear v dependence of R_K is observed
- + With higher v, R_K closer to pQCD expectation

MISSING MASS AND R_k

- + High-z kaons \rightarrow reduced phase space for other particles
- + At the same time, conservation laws (eg. charge, baryon number, strangeness..)
- + Missing mass M_X useful to study this region :

$$M_X \approx \sqrt{M_p^2 + 2M_p v(1-z) - Q^2 (1-z)^2}$$

- + R_K vs M_X are shown to be highly correlated !
- Suggests that correction within pQCD formalism is needed to take into account available phase space for target remnant hadronization.

Nicolas Pierre – Hadron Multiplicity and Fragmentation in SIDIS May 31, 2018 – CIPANP'18

R_K⁻¹ : **COMPASS VS HERMES DISCREPANCY**

Experiment	$\langle x \rangle$	$\langle Q^2 angle$ (GeV/c) 2	$\langle z \rangle$	$\langle u angle$ (GeV)	R_{κ}
COMPASS	0.035	1.3	0.69	20.8	0.412 ± 0.032
HERMES	0.033	1.2	0.69	19.0	0.392 ± 0.042
COMPASS	0.049	1.9	0.69	20.8	0.372 ± 0.028
HERMES	0.048	1.4	0.69	15.4	0.300 ± 0.028
COMPASS	0.077	3.0	0.69	20.8	0.355 ± 0.026
HERMES	0.076	1.6	0.69	11.6	0.266 ± 0.016
COMPASS	0.118	4.6	0.69	20.8	0.270 ± 0.027
HERMES	0.118	2.2	0.69	9.8	0.211 ± 0.017
COMPASS	0.158	6.1	0.69	20.8	0.227 ± 0.033
HERMES	0.166	3.2	0.69	10.2	0.202 ± 0.020

- + Strong v dependence of R_K may contribute to observed disagreement
- Direct comparison in the only common kinematic data point : there reaches agreement.
- + In neighbouring x bins, HERMES < v > is smaller than COMPASS one and HERMES ratio is smaller than COMPASS one.

CONCLUSION

→ Pion and kaon multiplicities measured in SIDIS

+ COMPASS : largest sample of kaon multiplicities to constrain FFs.

→ Integrated multiplicity sum

- Large discrepancies between COMPASS and HERMES for both pion and kaon multiplicity sums :
 - + up to 25% in the integrated $M^{\pi+}+M^{\pi-}$ (COMPASS below HERMES).
 - + up to 30-40% in the integrated M^{K+}+M^{K−} (COMPASS above HERMES).

→ Kaon multiplicity ratio

- Large disagreement with pQCD limit (and model expectations) for COMPASS K+/K- ratio at high z low v.
- Smooth behaviour of M_X suggests that correction within pQCD formalism is needed to take into account the available phase space for the target remnant hadronization.

→ Discrepancies in pion sums between COMPASS and HERMES..

- + .. while extraction of FFs into pions looks solid.
- → Fitting kaon multiplicities : Problem in DSS approach
 - + DSS = only fit with both COMPASS and HERMES data
 - Uses 2 projections of HERMES data without taking into account correlations
 - + Have to normalize the 2 projections in opposite directions
 - + Still high χ^2 for HERMES data

→ Input from theoreticians needed for interpretation of kaon data !

BACKUP

DEHSS GLOBAL FIT

0.2 0.4 0.6

0.8

0.2

1

0.4 0.6 0.8

0.2

1

0.4 0.6 0.8

DEHSS GLOBAL FIT

.

s tag	0.778	5	23.4	
c tag	0.778	5	42.5	
b tag	0.778	5	16.9	
Inclusive	1.077	45	30.6	
Inclusive	0.996	78	15.6	
K^{+} (p) Q^{2}	0.843	36	61.9	
K^{-} (p) Q^{2}	0.843	36	29.6	
K^+ (p) x	1.135	36	75.8	
K^{-} (p) x	1.135	36	42.1	
K^{+} (d) Q^{2}	0.845	36	44.7	
K^{-} (d) Q^{2}	0.845	36	41.9	
K^+ (d) x	1.095	36	48.9	
<i>K</i> ⁻ (d) <i>x</i>	1.095	36	44.4	
K^+ (d)	0.996	309	285.8	
K^{-} (d)	0.996	309	265.1	
$K^{+}, K^{-}/K^{+}$	1.088	16	7.6	
K/π	0.985	15	21.6	
		1194	1271.7	
	s tag c tag b tag Inclusive Inclusive K^+ (p) Q^2 K^- (p) Q^2 K^- (p) x K^- (p) x K^- (d) Q^2 K^- (d) Q^2 K^- (d) x K^- (d) x K^- (d) x K^- (d) x K^- (d) X	$\begin{array}{c} s \ \text{tag} & 0.778 \\ c \ \text{tag} & 0.778 \\ b \ \text{tag} & 0.778 \\ \text{Inclusive} & 1.077 \\ \text{Inclusive} & 0.996 \\ K^+ \ (\text{p}) \ Q^2 & 0.843 \\ K^- \ (\text{p}) \ Q^2 & 0.843 \\ K^- \ (\text{p}) \ x & 1.135 \\ K^- \ (\text{p}) \ x & 1.135 \\ K^- \ (\text{p}) \ x & 1.135 \\ K^- \ (\text{d}) \ Q^2 & 0.845 \\ K^- \ (\text{d}) \ Q^2 & 0.845 \\ K^- \ (\text{d}) \ Q^2 & 0.845 \\ K^- \ (\text{d}) \ x & 1.095 \\ K^- \ (\text{d}) \ x & 1.095 \\ K^- \ (\text{d}) \ x & 1.095 \\ K^- \ (\text{d}) \ 0.996 \\ K^- \ (\text{d}) \ 0.996 \\ K^- \ (\text{d}) \ 0.996 \\ K^- \ K^+, K^-/K^+ \ 1.088 \\ K/\pi \ 0.985 \end{array}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

BSS SIMULTANEOUS FIT

Borsa, Sassot & Stratmann arXiv:1708.01630v

Iterative procedure; fitting SIDIS charged kaon multiplicities from COMPASS and HERMES.

Concluding on NNPDF3.0 PDF set for s(x).

FIG. 5: Reweighting of the strange quark distribution (upper left panel) and for the PDF combinations sensitive to charge (upper right panel) and flavor (lower panels) symmetry breaking using the DSS 17 set of kaon FFs that is based on the MMHT 14 set of PDFs; see text. The dashed light blue and black lines and the hatched areas represent the results of one iteration of the reweighting procedure and the corresponding uncertainty bands, respectively; see text. All results are shown at a scale of $Q^2 = 5 \,\text{GeV}^2$.