The SENSEI[†] experiment

For direct detection of light dark matter

Guillermo Fernandez Moroni for the SENSEI Collaboration

May 31, 2018

† Sub-Electron-Noise SkipperCCD Experimental Instrument

SENSEI Collaboration

Build a detector using Skipper-CCDs to search for light DM canditates

- Fermilab: Michael Crisler, Alex Drlica-Wagner, Juan Estrada, Guillermo Fernandez, Miguel Sofo Haro, Javier Tiffenberg
- Stony Brook: Rouven Essig
- Tel Aviv University: Liron Barack, Erez Ezion, Tomer Volansky
- Oregon University: Tien-Tien Yu
- + several additional students + more to come

Fully funded by Heising-Simons Foundation & Fermilab HEISING-SIMONS FOUNDATION

SENSEI: lower the energy threshold to look for light DM candidates

Detect DM-e interactions by measuring the ionization produced by the electron recoils. See arXiv:1509.01598

Idea: use electrons in the CCDs as target

before SENSEI...we were looking for nuclear recoils

DArk Matter In CCDs

running at SNOLAB ~2 km underground

COherent Neutrino-Nucleus Interaction Experiment

running at Nuclear Plant in Brazil, by the beach

CCD: readout

capacitance of the system is set by the SN: $C=0.05 \text{pF} ightarrow 3 \mu \text{V/e}$

before SENSEI...we couldn't see single electron recoils

Now, new experiments based on Skipper CCD

- 2011: Achieving sub-electron readout noise in Skipper CCDs (arXiv:1106.1839v2)
- 2017: Single-electron and single-photon sensitivity with a silicon Skipper CCD (arXiv:1706.00028)
- approx. 8 years on the R&D of the Skipper CCD
- designed at LBNL: 200 & 250 μ m thick, 15 μ m pixel size

Sensors

Charge in pixel distribution. Counting electrons: 0, 1, 2..

4000 samples

Charge in pixel distribution. Counting electrons: 0, 1, 2..

4000 samples

SENSEI: DM search operation mode

- Counting electrons \Rightarrow **noise has zero impact**
- It can take about 1h to read the sensors
- Dark Current is the limiting factor

It's better to readout continuously to minimize the impact of the DC

Dark Current	$\geq 1\mathrm{e}^-$	\geq 2e $^-$	\geq 3e $^-$
$[e^-pix^{-1}day^{-1}]$	[pix]	[pix]	[pix]
10 ⁻³	$1 imes 10^8$	$3 imes 10^3$	$7 imes10^{-2}$
10^{-5}	$1 imes 10^{6}$	$3 imes 10^{-1}$	$7 imes 10^{-8}$
10 ⁻⁷	$1 imes 10^4$	$3 imes 10^{-5}$	$7 imes10^{-14}$

Measured upper limit for the DC in CCDs is: $1 \times 10^{-3} \text{ e pix}^{-1} \text{day}^{-1}$ arXiv:1611.03066 Could be orders of magnitude lower. Theoretical prediction is $O(10^{-7})$

SENSEI: electron recoil background requirements

The sensitivity is dominated by the lowest energy/charge bin

Back of the envelope calculation

A 100g detector that takes data for one year \rightarrow Expo = 36.5kg \cdot day

Assuming same background as in DAMIC:

- 5 DRU (events·kg⁻¹·day⁻¹·keV⁻¹) in the 0-1keV range
 - \rightarrow $\textit{\textit{N}}_{bkg}=36.5~\text{kg}\cdot\text{day}\times5~\text{DRU}=182.5$ events
- Dominated by external gammas \rightarrow flat Compton spectrum

182.5 events over the 278 charge bins in the 0-1keV range **Expect 0.65 bkd events in the lowest (2** e^-) charge-bin

Whats going on now: Installation @MINOS (FNAL), 100m underground

Technology demonstration: installation at shallow underground site

SENSEI commissioning run at surface: arXiv:1804.00088

Observed spectrum using 800 samples per pixel

dark current: $\sim 1.1 \ e^-$ /pix/day; no events with 5-100 electrons

SENSEI commissioning run at surface: arXiv:1804.00088

First direct-detection constraints between \sim 500 keV to 4 MeV!

Terrestrial effects: arXiv:1702.07750

SENSEI path

	2016	2017
-	LDRD funded, fabrication of SkipperCCD prototype	testing of prototype, received funding from HSF for S-10 and S-100
	2018	2019
	assembly and testing of S-10, take data	take more data with S-10, begin analysis assembly and testing of S-100
	2020	2021
-	continue S-10 analysis, take data with S-100	S-100 analysis

BACK UP SLIDES

SENSEI path

Summary

- SENSEI is the first dedicated experiment searching for electron recoils
- SENSEI's first results, using a prototype detector on the surface, probes 0.5-4 MeV masses for the first time, and larger cross sections than existing sub-GeV direct-detection constraints
- SENSEI experiment will use better sensors & collect almost 2 million times the exposure of this surface run in next \sim 2-3 years, probing large regions of uncharted territory populated by popular models
- Fully funded: 10g & 100g design/construction started.
 - Grant from Heising-Simons Foundation
 - Full technical support from Fermilab

Image taken with SENSEI: 20 samples per pixel

Single pixel distribution: X-rays from ⁵⁵Fe

The gain is the same for all the samples

A more detailed analysis: Klein-Nishina + binding energy correction

• at lower energies atomic binding energies are relevant

SENSEI commissioning run at surface: arXiv:1804.00088

First direct-detection constraints between ${\sim}500$ keV to 4 MeV!

Terrestrial effects: Timon Emken, RE, Kouvaris, Mukul Sholapurkar (to appear)

SENSEI commissioning run at surface: arXiv:1804.00088

First direct-detection constraints between ${\sim}500$ keV to 4 MeV!

Terrestrial effects: Timon Emken, RE, Kouvaris, Mukul Sholapurkar (to appear)

A more detailed analysis: Klein-Nishina + binding energy correction

- at lower energies atomic binding energies are relevant
- partial energy depositions populate low E region (thin det)

A more detailed analysis: Klein-Nishina + binding energy correction

- at lower energies atomic binding energies are relevant
- partial energy depositions populate low E region (thin det)

A more detailed analysis: Klein-Nishina + binding energy correction

- at lower energies atomic binding energies are relevant
- partial energy depositions populate low E region (thin det)

- at lower energies atomic binding energies are relevant
- partial energy depositions populate low E region (thin det)

- at lower energies atomic binding energies are relevant
- partial energy depositions populate low E region (thin det)

- at lower energies atomic binding energies are relevant
- partial energy depositions populate low E region (thin det)

- at lower energies atomic binding energies are relevant
- partial energy depositions populate low E region (thin det)

- at lower energies atomic binding energies are relevant
- partial energy depositions populate low E region (thin det) Back of the envelope

