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Motivation

•What is the nature of the Higgs boson?
•What is the origin of electro-weak symmetry breaking?
• Is there new physics below the Planck-scale? How could it look like?

experiment
• Higgs is a light scalar with mass 125 GeV

• No other resonances discovered so far

theory
• Standard Model is not UV complete

• Spectrum cannot be QCD-like︸ ︷︷ ︸
large separation of scales

e.g. strongly coupled conformal gauge theories

→ Higgs is a composite particle
→ Other resonances predicted in the few TeV range
→ Nonperturbative simulations using lattice field theory

Framework of composite Higgs models

• Start from Higgs-less Standard Model LSM0

• Add new strongly interacting gauge fermion system LSD

• Add interactions between new sector and Standard Model Lint

LUV → LSD + LSM0
+ Lint→ LSM + . . .

→ LSD triggers EW symmetry breaking and a light Higgs emerges

→ Give mass to SM gauge fields and fermions (4-fermion interaction, partial compositeness, . . . )

→ Effective ansatz: theory in the UV required to explain mass of LSD fermions

Mass-split models as candidates for LSD

• Promising candidates are chirally broken in the IR but conformal in the UV [1]

UV -I IR
ΛUV ΛIR

conformal

fermion masses

chirally broken

Higgs dynamics

→ Conformal many flavor system in the UV → Allow some of the masses to decouple in the IR

→ Arrive at a chirally broken few-flavor system

e.g. SU(3) gauge theory with 12 or 10 flavors

• Mass-split system are non-QCD like:

chirally broken, but dimensionless ratios show conformal hyperscaling i.e. IRFP governs UV dynamics

• Physical quantities depend only on m`/mh

• Gauge coupling is irrelevant, takes the value at the IRFP

• For m`→ 0, only mh is relevant, effectively setting the scale

• The Higgs boson can emerge as dilaton-like particle or pseudo Nambu Goldstone boson (pNGB)

dilaton-like Higgs

• Ideal two massless flavors in the IR

• Possibly a light 0++ could emerge from conformal FP

• Trivial vacuum alignment:

Fπ ≡ vev SM ∼ 246 GeV

pNGB Higgs

• Ideal four massless flavors in the IR

• Mass emerges from its interactions

• Non-trivial vacuum alignment:

Fπ ≡ (vev SM)/ sin(χ) > 246 GeV

Example: 4+8 mass-split model [2]

• Plaquette gauge action with negative adjoint term and nHYP smeared staggered fermions [3]

• β = 4.0 and 4.4, βa/β = −0.25, L3 × T = 243 × 48, simulations performed using FUEL [4]

• am` = 0.003, 0.005, 0.010, 0.015, 0.025, 0.35; amh = 0.05, 0.06, 0.07, 0.08, 0.10

• Connected spectrum from wall-sources and point-sinks, O(500) configurations

•Disconnected spectrum from stochastic sources with time-slice dilution, O(1000) configurations

Light-light spectrum
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• Dimensionless ratios — no scale setting

• Iso-singlet scalar 0++ is light, almost degenerate with the pion

• Ratios do neither depend on heavy flavor mass mh nor on gauge coupling β

⇒ the system exhibits hyperscaling

The light-light sector is chirally broken
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• Using the same lattice units, Fπ shows hyperscaling and approaches a finite value

•M2
π in lattice units shows linear behavior for small m` (cf. QCD: md/ms = 4.7/96 ≈ 0.05)

• As in QCD like theories, M%/Mπ diverges for m`→ 0

Hyperscaling in the light-light and heavy-heavy sector
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• 4+8 heavy-heavy spectrum is not QCD-like; QCD is not hyperscaling

•Mhh/Fπ increases but Fπ is finite in the chiral limit

•Mhh
% ∼ 3M% ⇒ could be accessible at the LHC

• Data at β = 4.0 and 4.4: gauge coupling is irrelevant

Outlook: 4+6 mass-split model
(Lattice Strong Dynamics collaboration)

• Tree-level improved Symanzik gauge action with stout-smeared Möbius domain-wall fermions [5]

• Simulations performed with Grid [6] or IroIro++ [7] to utilize state-of-the-art supercomputers

•Domain-wall fermions feature continuum-like symmetries simplifying calculations

→ Easier to calculate the Higgs potential, S-parameter, scattering processes, . . .

→ Easier to investigate partial compositeness or four-fermion interactions

→Avoids issues of staggered fermions (e.g. rooting, symmetry breaking)

• Likely larger anomalous dimension if Nf = 10 is indeed conformal [8, 9, 10]

Exploring the parameter space
pseudoscalar vector axial
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preliminary preliminary preliminary

• No data points — possibly large systematic effects: low statistics, excited states, FV, etc.

• Identified promising parameters for numerical simulations

• First signs of hyperscaling, starting to push into the chiral regime

Summary
Mass-split models in the basin of attraction of an IRFP

• Exhibit a large scale separation

•Have a non-QCD like spectrum

→ Light 0++ iso-singlet scalar

→Ratios show hyperscaling independent of coupling or heavy flavor mass

• Feature composite Higgs scenarios with a dilaton-like or pNGB Higgs boson

•Are highly predictive: at most one free parameter (due to hyperscaling)
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