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Liquid-hydrogen absorber: . .
(Japan, USA) The ratio of the downstream to upstream cumulative

—Large ionization energy-loss rate (cooling) amplitudes for two input beam configurations with nominal
—Low multiple scattering (heating) momenta of 140 MeV/c and nominal emittance of 6 (top) and
—First prototype built and bench-tested 10 (bottom) mm. Cooling is observed where Ramp > 1,

(LJ'Q,E')‘S" absorber - showing migration of muons from high to low amplitude.
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