

Deutsche Forschungsgemeinschaft DFG

The Weak Charge: From Low Energy to the Z-pole

Misha Gorshteyn - Mainz University

In collaboration with

…

Chuck Horowitz, Michael Ramsey-Musolf, Hubert Spiesberger,

CIPANP 2018 - Palm Springs, CA - May 29-June3 2018

Outline

- Running $sin^2\theta_W$ in Standard Model
- Sensitivity to New Physics
- \bullet sin² θ _W at low energy: weak charges
- Importance of electroweak boxes

Modified by radiative corrections

Universal radiative corrections can be absorbed into running $sin^2\theta_W$

 3 interactions, 3 generations of $\mathcal{O}(1)$ generations and leptons, $\mathcal{O}(1)$

µ(1 5)

 $g^{\prime 2}$ MS-bar scheme $\sin^2\theta_W =$ 0.243 $g^2 + g'^2$ NuTeV
(v-nucleus) (ee) 0.241 Most precise measurements to date: 0.239 QWeak (see Kent's talk Wed.)
and LEP1/SLC (Z-pole) 3% apart
SM prediction: 2 x 10⁻⁵ precision Q_{weak} QWeak (see Kent's talk Wed.) (e_D) and LEP1/SLC (Z-pole) 3% apart **APV PVDIS** (^{133}Cs) (e^2H) 0.233 .EP Tevatro Erler, Ramsey-Musolf, hep-ph/0409169 0.231 LHC Erler, Ferro Hernandez, [arXiv:1712.09146](http://arxiv.org/abs/arXiv:1712.09146) QWeak Coll., Nature 2018 0.229 10^{-2} $10⁰$ $10²$ 10^{-4} $10⁴$ Q (GeV)

Main idea: **in Appendix B. In Section 5 the flavor separation flavor separation (contributions of light and strange quarks)** running of WMA with respect to running of α discussed in detail, and Section 7 offers our final results and conclusions.

Erler, Ramsey-Musolf, hep-ph/0409169 τ to running of α Erler, Ferro Hernandez, arXiv:1712.09146

RG equation for em and weak vector coupling very similar em and weak vector coupling very similar Including higher order corrections, the RGE for the *Z* boson vector coupling to fermion *f*, Including higher order corrections, the RGE for the *Z* boson vector coupling to fermion *f*,

$$
\mu^2 \frac{d\hat{\alpha}}{d\mu^2} = \frac{\hat{\alpha}^2}{\pi} \left[\frac{1}{24} \sum_i K_i \gamma_i Q_i^2 + \sigma \left(\sum_q Q_q \right)^2 \right]
$$

$$
\mu^2 \frac{d\hat{v}_f}{d\mu^2} = \frac{\hat{\alpha} Q_f}{24\pi} \left[\sum_i K_i \gamma_i \hat{v}_i Q_i + 12\sigma \left(\sum_q Q_q \right) \left(\sum_q \hat{v}_q \right) \right]
$$

Main idea: **in Appendix B. In Section 5 the flavor separation flavor separation (contributions of light and strange quarks)** running of WMA with respect to running of α discussed in detail, and Section 7 offers our final results and conclusions.

Erler, Ramsey-Musolf, hep-ph/0409169 τ to running of α Erler, Ferro Hernandez, arXiv:1712.09146

RG equation for em and weak vector coupling very similar em and weak vector coupling very similar Including higher order corrections, the RGE for the *Z* boson vector coupling to fermion *f*, Including higher order corrections, the RGE for the *Z* boson vector coupling to fermion *f*,

$$
\mu^2 \frac{d\hat{\alpha}}{d\mu^2} = \frac{\hat{\alpha}^2}{\pi} \left[\frac{1}{24} \sum_i K_i \gamma_i Q_i^2 + \sigma \left(\sum_q Q_q \right)^2 \right]
$$
\n
$$
\mu^2 \frac{d\hat{v}_f}{d\mu^2} = \frac{\hat{\alpha}}{2}
$$

$$
\hat{v}_f = T_f - 2Q_f \sin^2 \hat{\theta}_W
$$

$$
\mu \frac{d\mu^2}{d\mu^2} = \frac{1}{\pi} \left[\frac{24}{24} \sum_i \frac{K_i \gamma_i Q_i + \sigma \left(\sum_q Q_q \right)}{\sigma^2} \right]
$$
\n
$$
\mu^2 \frac{d\hat{v}_f}{d\mu^2} = \frac{\hat{\alpha} Q_f}{24\pi} \left[\sum_i K_i \gamma_i \hat{v}_i Q_i + 12\sigma \left(\sum_q Q_q \right) \left(\sum_q \hat{v}_q \right) \right]
$$

Kⁱ and contain higher-order corrections and are given by [25], *Kⁱ* = *N^c* Q_i , q_i \mathbf{i} - e CIEU COMITIDU \mathbf{r} ↵ˆ*s* \prod + *s* Q_i, v_i - el. and weak charges ↵ˆ3 ⇡3 \mathcal{L} + \mathcal{L} + \mathcal{L} + \mathcal{L} + \mathcal{L} \overline{v} $\frac{1}{2}$ K_i – $\overline{5}$ <u>h.o. co</u> $\overline{5}$ ⁸⁶⁴ ⁺ \overline{t} ⁵⁴⇣³ Ki - h.o. coefficients \mathcal{L} <u>J</u> $\begin{array}{c} \hline \end{array}$ Connected contributions γ_{i} - field-dependent constants

Main idea: **in Appendix B. In Section 5 the flavor separation flavor separation (contributions of light and strange quarks)** running of WMA with respect to running of α discussed in detail, and Section 7 offers our final results and conclusions.

Erler, Ramsey-Musolf, hep-ph/0409169 τ to running of α Erler, Ferro Hernandez, arXiv:1712.09146

RG equation for em and weak vector coupling very similar em and weak vector coupling very similar

Main idea: **in Appendix B. In Section 5 the flavor separation flavor separation (contributions of light and strange quarks)** running of WMA with respect to running of α discussed in detail, and Section 7 offers our final results and conclusions.

Erler, Ramsey-Musolf, hep-ph/0409169 τ to running of α Erler, Ferro Hernandez, arXiv:1712.09146

RG equation for em and weak vector coupling very similar em and weak vector coupling very similar

 n^q $\ln 5$ n tro m Z-pole down: in tegrate heavy d.o.f. ste 33 2*n^q* by s step, mat ch at thres \overline{a} Run from Z-pole down: integrate heavy d.o.f. step by step, match at threshold match at [.] 33 2*n^q* eshold

recision running or sin-ow(Precision running of sin²θw(μ)

By the time one gets down to low scale QCD is non-perturbative use experimental input + dispersion relation By the time one gets down to low scale QCD is non-perturbative $$ use experimental input + dispersion relation l input + dispersion relation
 $\Omega(c)$ = c (at a constrained) $\Lambda(c)$ = c (at a constrained)

Use exp. known R(s)= $\sigma(e^+e^- \to \text{hadrons})/\sigma(e^+e^- \to \mu^+\mu^-)$

 m ctop flavor rotate D to get Z coupling from a measupling light quarks (bosons, leptons, charm and bottom quarks are included following Sec. 2). The Final step - flavor rotate R to get Z coupling from e.-m. coupling

Precision running of sin²θw(μ) Eq. (2.5) together with the *Z* pole value of the weak mixing angle from a global fit to the **Precision running of sin²0w(µ**

 \overline{c} SM prediction for low energy:

 $\sin^2 \theta_W (0) = 0.23868 \pm 0.00005 \pm 0.00002$

Erler, Ferro Hernandez, [arXiv:1712.09146](http://arxiv.org/abs/arXiv:1712.09146)

Precision running of sin²θw(μ)

Sensitivity to New Physics

The running is a unique prediction of the Standard Model Deviation ANYWHERE = BSM signal

Sensitivity to New Physics

Complementary access to New Physics by PV e-p and e-e scattering

Erler, Kurylov, Ramsey-Musolf, [hep-ph/0302149](http://arxiv.org/abs/arXiv:1712.09146)

Running sin² θ_W and Dark Parity Violation

Heavy BSM reach of modern low-energy experiments: up to 49 TeV Sensitivity to light dark gauge sector Complementary to colliders

Experimental tests of running $sin^2\theta_W(\mu)$

from the measured discrete cell windows, where the measured discrete \sim \mathbf{u} Proton's weak charge with PVES

 $\Delta \sqrt{2\pi\alpha}$ $\alpha = \frac{1}{2}$ is $\alpha = \frac{1}{2}$. All α U_0 G_FQ^2 in the fit: the fit: the fit: the fit: the matrix G_FQ^2 and C_1 the strange charge radius ⇢*^s* and magnetic moment µ*s*, and the isovector axial form factor *G^Z* (*T*=1) $Q_W^p = \lim_{\Omega^2}$ $Q^2 \rightarrow 0$ $\sqrt{ }$ $-\frac{4}{7}$ $\frac{4\sqrt{2}\pi\alpha}{G_FQ^2}A^{exp}\Bigg[$ Weak charge from PVES:

 $Q_W^{p,\, \rm tree} = 1 - 4 \sin^2 \theta_W \approx 0.07$ Q_WP in SM at tree-level: accidentally suppressed

A sensitive test of running of θ_W at low energy: 2% measurement of $Q_W \rightarrow 0.14\%$ on sin² θ_W

$B(Q²)$ - from non-forward PVES data Young et al. '07; Androic et al. [Qweak Coll.], '13

Marciano and Sirlin '84: γZ-box mainly universal (large log) same for PV in atoms and e-scattering Residual dependence on hadronic scale Λ No energy dependence assumed

$$
\Box_{\gamma Z} = \frac{5\,\hat{\alpha}}{2\,\pi} (1 - 4\,\hat{s}^2) \bigg[\ln \bigg(\frac{M_Z^2}{\Lambda^2} \bigg) + C_{\gamma Z}(\Lambda) \bigg]
$$

 0.0052 ± 0.0005 (7.3 $\pm0.7\%$ of Q_W)

γ Z-Box from Dispersion Relations

γ Z-box from forward dispersion relation

Imaginary part = on-shell states = data Real part: from unitarity + analyticity + symmetries

MG, Horowitz '09; MG, Horowitz, Ramsey-Musolf '11

Lower blob: forward interference Compton tensor

$$
\text{Im}W^{\mu\nu} = -\hat{g}^{\mu\nu}F_1^{\gamma Z} + \frac{\hat{p}^{\mu}\hat{p}^{\nu}}{(p \cdot q)}F_2^{\gamma Z} + \frac{i\epsilon^{\mu\nu\alpha\beta}p_{\alpha}q_{\beta}}{2(p \cdot q)}F_3^{\gamma Z}
$$

Forward dispersion relation for $\Box_{\gamma Z} = g_V^e \Box_{\gamma Z_A} + g_A^e \Box_{\gamma Z_V}$

$$
\text{Re}\Box_{\gamma Z_V}(E) = \frac{2E}{\pi} \int_0^\infty dQ^2 \int_{W_\pi^2}^\infty dW^2 \left[A \underbrace{F_1^{\gamma Z}(W^2, Q^2)}_{W_\pi^2} + B \underbrace{F_2^{\gamma Z}(W^2, Q^2)}_{\text{Inclusive PV data}}
$$
\n
$$
\text{Re}\Box_{\gamma Z_A}(E) = \frac{2}{\pi} \int_0^\infty dQ^2 \int_{(M+m_\pi)^2}^\infty dW^2 C \underbrace{F_3^{\gamma Z}(W^2, Q^2)}_{\text{Inclusive PV data}} - \text{little available}
$$

Energy dependence of γ Z-Box from Dispersion Relations

Vector box
$$
\text{Re}\Box_{\gamma Z_V}(E) = \frac{2E}{\pi} \int_0^\infty dQ^2 \int_{W_\pi^2}^\infty dW^2 \left[AF_1^{\gamma Z}(W^2, Q^2) + BF_2^{\gamma Z}(W^2, Q^2) \right]
$$

Not much data on $F_1Z_{1,2}$ available - relate to e.-m. $F_{1,2}$

As for running $sin^2\theta_W$ from α : need flavor separation + rotation Unfortunately, unlike for $e^+e^->$ hadrons this flavor separation can only be done in very limited kinematical range -> larger model dependence

Central values agree, some discussion on the errors Three groups estimated γZ^{\vee} box for QWeak energy E = 1.165 GeV:

Energy dependence of γ Z-Box from Dispersion Relations

Model dependence stems from that in the flavor separation/rotation

Steep energy dependence of the γZ^{\vee} box (much smaller for smaller energy) Flavor (isospin) structure in the resonance region well understood - Furnished a strong motivation for the P2 experiment in Mainz at E=155 MeV

 $\mathrm{Re}\,\square_{\gamma Z}^V(E=155\,\mathrm{MeV})=(1.1\pm0.18)\times10^{-3}$

Frank's talk today

$$
\gamma Z\text{-}Box_{\text{A}}\text{from}\text{Bissp}^T\text{is}\text{p}^T\text{is}\text{p}^2\text{Re}[\text{adjons}(Q^2,E)]
$$

Axial box - additional energy dependence

$$
\text{Re } \Box_{\gamma Z}^{A}(E) = \frac{2\alpha}{\pi} (1 - 4s^{2} \hat{\theta}_{W}) \int_{0}^{\infty} dQ^{2} \int_{0}^{\infty} \frac{e^{-x}}{dW^{2}} \frac{dW^{2}}{dW^{2}} \frac{dW^{
$$

 $\mathcal{M} = \mathcal{M}^2$, \mathcal{M}^2 , \mathcal{M}^2 and \mathcal{M}^2 and \mathcal{M}^2 and \mathcal{M}^2 and \mathcal{M}^2 and \mathcal{M}^2 $r_{\rm g}(E=0) = (5.2 \pm 0.5) \times 10^{-3} \rightarrow {\rm Re}$ $\mathrm{Re}\,\square_{\gamma Z}^{A}(E=0)=(5.2\pm0.5)\times10^{-3}\,\rightarrow\,\mathrm{Re}\,\square_{\gamma Z}^{A}(E=1.165\,\mathrm{GeV})=(3.7\pm0.4)\times10^{-3}$

E (GeV)

Status of the energy-dependent γ Z-Box

MG, Horowitz, PRL 102 (2009) 091806;

Nagata, Yang, Kao, PRC 79 (2009) 062501; Tjon, Blunden, Melnitchouk, PRC 79 (2009) 055201; Zhou, Nagata, Yang, Kao, PRC 81 (2010) 035208; Sibirtsev, Blunden, Melnitchouk, PRD 82 (2010) 013011; Rislow, Carlson, PRD 83 (2011) 113007;

MG, Horowitz, Ramsey-Musolf, PRC 84 (2011) 015502; Blunden, Melnitchouk, Thomas, PRL 107 (2011) 081801; Rislow, Carlson PRD 85 (2012) 073002;

Blunden, Melnitchouk, Thomas, PRL 109 (2012) 262301; Hall et al., PRD 88 (2013) 013011;

Rislow, Carlson, PRD 88 (2013) 013018;

Hall et al., PLB 731 (2014) 287;

MG, Zhang, PLB 747 (2015) 305;

Hall et al., PLB 753 (2016) 221;

MG, Spiesberger, Zhang, PLB 752 (2016) 135;

QWEAK final result: $QP_W = 0.0719 \pm 0.0045$ (error mostly experimental) QWEAK energy: $\text{Re}\,\Box_{\gamma Z}^{A+V}(E=1.165\,\text{GeV}) = (9.3\pm 1.5)\times 10^{-3}$ (mostly vector box) T_{eff} are respective uncertainties are added in T_{eff}

 $P_{e} \Box^{A+V}(E = 155 \text{ MeV}) = (5.4)$ **P2 energy:** $\mathbf{R}e \sqcup_{\gamma Z} (E = 133 \text{ MeV}) = (3.4$ P2 expectation: $Q_{\text{PW}} = 0.0713 \pm 0.0013$ $t = \text{exp}$ extrapolation α we consider α P2 energy: ${\rm Re}\,\Box^{A+V}_{\gamma Z}(E=155\,{\rm MeV})=(5.4\pm0.4)\times10^{-3}$ (mostly axial box) P2 expectation: $Q_{\text{PW}} = 0.0713 \pm 0.0013$

Summary

- Running $sin^2\theta_W$ in SM is known very precisely
- Bridges low and high energies, light and heavy BSM
- Proton's weak charge: enhanced sensitivity
- Electroweak boxes play a major role at low energies (same for Vud extraction, 00νβ decay, …)