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Outline

• Running sin2θW in Standard Model


• Sensitivity to New Physics


• sin2θW at low energy: weak charges


• Importance of electroweak boxes



Standard Model
3 interactions, 3 generations of quarks and leptons, Higgs

In SM fermions interact via exchange of a vector boson (or a Higgs)
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WMA: mixing of gauge fields
WMA determines the relative strength

of the weak NC vs. e.-m. interaction

Universal radiative corrections can be absorbed into running sin2θW

Most precise measurements to date:


QWeak (see Kent’s talk Wed.) 

and LEP1/SLC (Z-pole) 3% apart

SM prediction:  2 x 10-5 precision

QWeak Coll., Nature 2018
Erler, Ramsey-Musolf, hep-ph/0409169
Erler, Ferro Hernandez, arXiv:1712.09146
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Modified by radiative corrections
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Weak Mixing Angle

http://arxiv.org/abs/arXiv:1712.09146


Precision running of sin2θW(μ)
Main idea: 

running of WMA with respect to running of 𝜶

Erler, Ramsey-Musolf, hep-ph/0409169
Erler, Ferro Hernandez, arXiv:1712.09146

boson �i fermion �i

real scalar 1 chiral fermion 4

complex scalar 2 Majorana fermion 4

massless gauge boson �22 Dirac fermion 8

Table 1. RGE contributions of different particle types, where the minus sign is indicative for the
asymptotic freedom in non-Abelian gauge theories.

the calculation of the singlet contribution to the weak mixing angle, with some details given
in Appendix B. In Section 5 the flavor separation (contributions of light and strange quarks)
is addressed and threshold masses are calculated. In Section 6 theoretical uncertainties are
discussed in detail, and Section 7 offers our final results and conclusions.

2 Renormalization group evolution

In an approximation in which all fermions are either massless and active or infinitely heavy
and decoupled, the RGE for the electromagnetic coupling in the MS scheme [24], ↵̂, can be
written in the form [2],
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where the sum is over all active particles in the relevant energy range. The Qi are the electric
charges, while the �i are constants depending on the field type and shown in Table 1. The
Ki and � contain higher-order corrections and are given by [25],
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RG equation for em and weak vector coupling very similar

Energy range �1 �2 �3 �4

m̄t  µ
9
20

289
80

14
55

9
20

MW  µ < m̄t
21
44
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6
11

3
22

m̄b  µ < MW
21
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15
22
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9
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5

m̄c  µ < m⌧
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2
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7
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5
36 0

m̄d  µ < m̄s
9
20

2
5

13
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1
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m̄u  µ < m̄d
3
8

1
4

3
40 0

mµ  µ < m̄u
1
4 0 0 0

me  µ < mµ
1
4 0 0 0

Table 2. Coefficients entering the higher order RGE for the weak mixing angle.

with nq the number of active quarks and N
c
i = 3 the color factor for quarks. For leptons

one substitutes N
c
i = 1 and ↵̂s = 0, while Ki = 1 for bosons.

We can relate the RGE of ↵̂ to that of sin2 ✓̂W since both, the �Z mixing tensor
⇧̂�Z and the photon vacuum polarization function ⇧̂�� are pure vector-current correlators.
Including higher order corrections, the RGE for the Z boson vector coupling to fermion f ,
v̂f = Tf � 2Qf sin

2
✓̂W , where Tf is the third component of weak isospin of fermion f , is
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Eqs. (2.1) and (2.4) can be used [2] to obtain
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where the �i are known [2] constants given in Table 2 and the explicit Ki dependence has
disappeared. The �̃ terms,
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Connected contributions

Qi, 𝓿i - el. and weak charges

γi - field-dependent constants


Ki - h.o. coefficients 

Figure 1. Examples of a connected (top) and a disconnected (bottom) Feynman diagram.
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with nq the number of active quarks and N
c
i = 3 the color factor for quarks. For leptons

one substitutes N
c
i = 1 and ↵̂s = 0, while Ki = 1 for bosons.

We can relate the RGE of ↵̂ to that of sin2 ✓̂W since both, the �Z mixing tensor
⇧̂�Z and the photon vacuum polarization function ⇧̂�� are pure vector-current correlators.
Including higher order corrections, the RGE for the Z boson vector coupling to fermion f ,
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Eqs. (2.1) and (2.4) can be used [2] to obtain
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Figure 1. Examples of a connected (top) and a disconnected (bottom) Feynman diagram.

The matching conditions of ŝ2 and ↵̂ can also be related [2],
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Applying the numerical analysis of the previous paragraph to Eq. (2.9), we find 2.4⇥ 10�6

and �1.4⇥ 10�6, respectively, and we estimate a truncation error related to the matching
of about ±3⇥ 10�6 in ŝ

2.
For completeness we recall that integrating out the W

± bosons induces the one-loop
matching condition [2, 28],

1

↵̂+
=
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↵̂� +
1

6⇡
. (2.10)

For ŝ
2 this implies

sin2 ✓̂W (MW )+ = 1� ↵̂(MW )+

↵̂(MW )�
cos2 ✓̂W (MW )�. (2.11)

3 Implementation of experimental input

The perturbative treatment of the previous section cannot be applied at hadronic energy
scales and experimental input is required. This is usually taken from R(s), i.e., the cross
section �(e+e� ! hadrons) normalized to �(e+e� ! µ

+
µ
�). Additional information on

R(s) is encoded in hadronic ⌧ decay spectral functions [32]. The traditional method to
implement the R(s) measurements is through a subtracted dispersion integral,

�↵
(5)
had(M

2
Z) =

↵

3⇡

Z 1

4m2
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ds
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Z

s(M2
Z � s)� i✏

, (3.1)

which gives the hadronic contribution (with the top quark removed) to the Z scale value of
the electromagnetic coupling in the on-shell scheme. One supplements the input data with
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with nq the number of active quarks and N
c
i = 3 the color factor for quarks. For leptons

one substitutes N
c
i = 1 and ↵̂s = 0, while Ki = 1 for bosons.

We can relate the RGE of ↵̂ to that of sin2 ✓̂W since both, the �Z mixing tensor
⇧̂�Z and the photon vacuum polarization function ⇧̂�� are pure vector-current correlators.
Including higher order corrections, the RGE for the Z boson vector coupling to fermion f ,
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boson �i fermion �i

real scalar 1 chiral fermion 4

complex scalar 2 Majorana fermion 4

massless gauge boson �22 Dirac fermion 8

Table 1. RGE contributions of different particle types, where the minus sign is indicative for the
asymptotic freedom in non-Abelian gauge theories.

the calculation of the singlet contribution to the weak mixing angle, with some details given
in Appendix B. In Section 5 the flavor separation (contributions of light and strange quarks)
is addressed and threshold masses are calculated. In Section 6 theoretical uncertainties are
discussed in detail, and Section 7 offers our final results and conclusions.

2 Renormalization group evolution
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where the sum is over all active particles in the relevant energy range. The Qi are the electric
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Figure 1. Examples of a connected (top) and a disconnected (bottom) Feynman diagram.

The matching conditions of ŝ2 and ↵̂ can also be related [2],
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Applying the numerical analysis of the previous paragraph to Eq. (2.9), we find 2.4⇥ 10�6

and �1.4⇥ 10�6, respectively, and we estimate a truncation error related to the matching
of about ±3⇥ 10�6 in ŝ

2.
For completeness we recall that integrating out the W

± bosons induces the one-loop
matching condition [2, 28],
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↵̂� +
1

6⇡
. (2.10)

For ŝ
2 this implies

sin2 ✓̂W (MW )+ = 1� ↵̂(MW )+

↵̂(MW )�
cos2 ✓̂W (MW )�. (2.11)

3 Implementation of experimental input

The perturbative treatment of the previous section cannot be applied at hadronic energy
scales and experimental input is required. This is usually taken from R(s), i.e., the cross
section �(e+e� ! hadrons) normalized to �(e+e� ! µ

+
µ
�). Additional information on

R(s) is encoded in hadronic ⌧ decay spectral functions [32]. The traditional method to
implement the R(s) measurements is through a subtracted dispersion integral,
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(5)
had(M

2
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↵

3⇡

Z 1

4m2
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ds
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Z
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, (3.1)

which gives the hadronic contribution (with the top quark removed) to the Z scale value of
the electromagnetic coupling in the on-shell scheme. One supplements the input data with
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By the time one gets down to low scale QCD is non-perturbative -

use experimental input + dispersion relation

the theoretical (perturbative) prediction for R(s) at s � s0, with s0 large enough to be
able to trust QCD perturbation theory. A variant [33] of this approach evaluates Eq. (3.1)
in the space-like region, �↵
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2
Z), and obtains �↵

(5)
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Z) in a second step. More

details about how different groups get the running of alpha are given in Appendix A.
In the MS scheme it is more natural to use an unsubstracted dispersion relation [24],
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s� i✏
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where the superscript indicates that we focus here on the currents produced by the three
light quarks (bosons, leptons, charm and bottom quarks are included following Sec. 2). The
upper integration limit can in principle be chosen as an arbitrary perturbative scale µ0, but
in practice we take µ

2
0 to coincide with the cut-off value s0 used in the traditional method,

since this allows us to recycle results obtained there. Indeed [24],
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for µ0 . 2 GeV. Using the results of Ref. [16] including inputs from ⌧ decays which we
correct for �-⇢ mixing [17], we obtain,
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We compute the second term in Eq. (3.2) at the scale µ = 2 GeV perturbatively [34],
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where the Fi(m̂c, m̂b) are correction terms from the charm and bottom quarks. The ex-
plicit analytical expression for F2(m̂c, m̂b) ' �0.2348 is given in Ref. [24], while that for
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Figure 1. Examples of a connected (top) and a disconnected (bottom) Feynman diagram.

The matching conditions of ŝ2 and ↵̂ can also be related [2],

sin2 ✓̂W (m̂f )
� =

↵̂(m̂f )�

↵̂(m̂f )+
sin2 ✓̂W (m̂f )

+ +
QiTi

2Q2
i


1�

↵̂(m̂f )�

↵̂(m̂f )+

�
. (2.9)

Applying the numerical analysis of the previous paragraph to Eq. (2.9), we find 2.4⇥ 10�6

and �1.4⇥ 10�6, respectively, and we estimate a truncation error related to the matching
of about ±3⇥ 10�6 in ŝ

2.
For completeness we recall that integrating out the W

± bosons induces the one-loop
matching condition [2, 28],

1

↵̂+
=

1

↵̂� +
1

6⇡
. (2.10)

For ŝ
2 this implies

sin2 ✓̂W (MW )+ = 1� ↵̂(MW )+

↵̂(MW )�
cos2 ✓̂W (MW )�. (2.11)

3 Implementation of experimental input

The perturbative treatment of the previous section cannot be applied at hadronic energy
scales and experimental input is required. This is usually taken from R(s), i.e., the cross
section �(e+e� ! hadrons) normalized to �(e+e� ! µ

+
µ
�). Additional information on

R(s) is encoded in hadronic ⌧ decay spectral functions [32]. The traditional method to
implement the R(s) measurements is through a subtracted dispersion integral,

�↵
(5)
had(M

2
Z) =

↵

3⇡

Z 1

4m2
⇡

ds
R(s)M2

Z

s(M2
Z � s)� i✏

, (3.1)

which gives the hadronic contribution (with the top quark removed) to the Z scale value of
the electromagnetic coupling in the on-shell scheme. One supplements the input data with
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 Bridging the SM to New Physics with the  
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Δα from hadronic data
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Precision running of sin2θW(μ)

Figure 3. Scale dependence of the weak mixing angle in the MS renormalization scheme. The
dots indicate the scales where a particle is integrated out. The total uncertainty corresponds to
the thickness of the line. The �-function of SU(2)L changes sign at µ = MW , where the fermionic
screening effects of the effectively Abelian gauge theory are being overcompensated by the anti-
screening effects of the full non-Abelian electroweak theory.

where the second error is the total theoretical uncertainty from Table 4.
To facilitate the update of our results in the future, we also present a linearized formula

of the form factor (0),
sin2 ✓̂W (0) ⌘ ̂(0) sin2 ✓̂W (MZ), (7.2)

in terms of variations of the input parameters, using �↵̂s(MZ) in Eq. (3.6), as well as,

�̃↵ ⌘ �↵(2.0 GeV)� 0.005871, (7.3)

and,

�m̂c ⌘
m̂c(m̂c)

1.272 GeV
� 1, �m̂b ⌘

m̂b(m̂b)

4.180 GeV
� 1. (7.4)

We obtain,

̂(0) = 1.03196± 0.00006 + 1.14 �̃↵+ 0.025�↵̂s � 0.0016�m̂c � 0.0012�m̂b , (7.5)

which shows that the current experimental uncertainties of ±0.45 ⇥ 10�4 in �↵(2 GeV)

from Eq. (4.9) and of ±0.0016 in ↵̂s(MZ) induce errors of ±5⇥10�5 and ±4⇥10�5 in ̂(0),
respectively. Variations of ±8 MeV [37] in m̂c(m̂c) and ±30 MeV in m̂b(m̂b) both imply
⌥2 ⇥ 10�6 in ŝ(0) which is negligible. The resulting scale evolution of the weak mixing
angle is illustrated in Figure 3.
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The first uncertainty is induced by the experimental error in the determination of
�↵̂

(3)(2.0 GeV). Eq. (2.5) propagates this uncertainty to the weak mixing angle [2],

�ŝ
2(0) =


1

2
� ŝ

2

�
��↵̂

(3)(2 GeV) = ⌥1.2⇥ 10�5
, (6.1)

where we have used ��↵̂
(3)(2 GeV) = ±0.45⇥ 10�4 from Eq. (3.4).

The three light quarks enter with different electroweak weights into ŝ
2(0) and �↵

(3)(m̄c).
The flavor separation uncertainty is due to the imperfect knowledge of how much s quarks
relative to u and d quarks contribute to �↵

(3)(m̄c). It is given by [2],

�ŝ
2(0) ' 1

20
��↵̂

(2)(m̄c) = ±1.0⇥ 10�5
, (6.2)

where we used ��↵̂
(2)(m̄s) = ±1.9⇥ 10�4 from Eq. (5.25).

The flavor separation assumed isospin symmetry in the form m̄u = m̄d. To estimate the
uncertainty associated with isospin breaking, we first consider the idealized case in which
SU(2) isospin violation was as large as SU(3) breaking. This would occur for m̄d = m̄s, so
that from Eq. (5.25) the u quark current could at most contribute

�↵
(1)(m̄d) < 14.8⇥ 10�4

. (6.3)

To propagate this uncertainty to ŝ
2(0) we can use [2],

�ŝ
2(0) = � 3

40
�↵

(1)(m̄d) > �1.1⇥ 10�4
. (6.4)

A measure of the breaking of SU(2) relative to SU(3) is given by the ratio,
�����
M

2
K⇤± �M

2
K⇤0

M2
K⇤± �M2

⇢0

����� ⇡ 0.06, (6.5)

so that,
�ŝ

2(0) =+0
�7 ⇥10�6

. (6.6)

This error is asymmetric because we assume m̄d � m̄u, but it is convenient and conservative
to treat it symmetrically in Table 4.

The uncertainty arising from the singlet contribution is given in Eq. (4.11). The last
entry in Table 4 combines the truncation error from the perturbative matching conditions
with the scheme conversion error shown as the second uncertainty in Eq. (3.7).

7 Results and conclusions

Eq. (2.5) together with the Z pole value of the weak mixing angle from a global fit to the
SM [35], sin2 ✓̂W (MZ) = 0.23129(5), can now be used to compute the weak mixing angle at
zero momentum transfer,

sin2 ✓̂W (0) = 0.23868± 0.00005± 0.00002, (7.1)
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SM prediction for low energy:

Erler, Ferro Hernandez, arXiv:1712.09146

http://arxiv.org/abs/arXiv:1712.09146
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SM global fit at Z-pole:

Precision running of sin2θW(μ)

P2

Shown is sin2θeff
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Figure 3: Comparison of anticipated errors for QW (p) and QW (e) with deviations from the SM
expected from various extensions and allowed (at 95% CL) by fits to existing data. Note that the
two measurements are highly complementary. They would shift in a strongly correlated manner
due to SUSY loops or a (1 TeV) Z ′ and thus together they could result in evidence for such new
physics. In the case of RPV SUSY, the two measurements are somewhat anticorrelated. Finally,
only QW (p) is sensitive to LQs, while QW (e) would serve as a control.

In Fig. 2 we plot the present constraints on ∆C1u and ∆C1d, the shifts in the C1q caused by
new physics. They are derived from QW (Cs) [23], as well as the MIT-Bates 12C [18] and SLAC
deuterium [15] parity violation measurements. As long as ∆C1u and ∆C1d are almost perfectly
correlated, the result is an elongated ellipse. The impact of the proposed QW (p) measurement is
indicated by the smaller ellipse. The dramatic reduction in the allowed parameter space will be
possible because QW (p) probes a very different linear combination than the existing data.

In the next two Sections we turn to specific extensions of the SM, of which there are many,
and focus on three particularly well motivated types: gauge bosons, SUSY, and LQs. In doing so,
we emphasize the complementarity of the PV Møller asymmetry measured by the SLAC-E-158
experiment [24] which has comparable anticipated precision and (as a purely leptonic observable)
has a clean theoretical interpretation. Some new physics scenarios appear more strongly in the
semileptonic channel than in the purely leptonic channel and vice versa. The complementarity of
the two measurements is advantageous in attempting to distinguish among various new physics
scenarios and is summarized in Fig. 3.
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Q2

APV =
�R � �L
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4
p
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⇥
Qp

W + Q2B(Q2)
⇤

Qp, tree
W = 1� 4 sin2 ✓W ⇡ 0.07

EPJ Web of Conferences

where AT is the remnant transverse asymmetry explicitly measured with transversely polarized beam,
and the regression correction Areg accounts for false asymmetries measured with natural and driven
beam motion for x, y, x0, y0, and beam energy. The charge asymmetry was driven to zero with a
feedback loop. Backgrounds were accounted for with explicit measurements of each of four back-
ground asymmetries Ai and their dilutions fi. The backgrounds arose from the aluminum target cell
windows, the beamline, soft neutral background, and inelastic events. The largest background was
from the target cell windows, where the measured dilution was 3.2% and the measured asymmetry for
this background was 1.76 ppm. The final asymmetry was obtained from

Aep = Rtot

Amsr/P �
4P

i=1
fiAi

1 �P fi
. (6)

Here Rtot = 0.98 accounts for the combined e↵ects of radiative corrections, the non-uniform light and
Q2 distribution across the detectors, and corrections for the uncertainty in the determination of Q2. P
represents the measured beam polarization of 0.890 ± 0.018. The total dilution ftot =

P
fi = 3.6%.

The final corrected asymmetry from the commissioning data reported here [16], comprising only about
4% of the data obtained in the experiment, is Aep = �279 ± 35 (statistics) ± 31 (systematics) ppb.

5 Results

The result from the commissioning data reported here was combined with other PVES results [17–28]
on hydrogen, deuterium, and helium in a global fit following the prescription in [4]. All PVES data
up to 0.63 GeV2 were used. Five free parameters were varied in the fit: the weak charges C1u and C1d,
the strange charge radius ⇢s and magnetic moment µs, and the isovector axial form factor GZ (T=1)

A .
The isoscalar GZ (T=0)

A was constrained by theory [29]. All the data were corrected for the energy
dependence of the �-Z box diagram calculated in Ref. [9]. The small Q2 dependence of the �-Z box
diagram above Q2=0.025 (GeV)2 was included using the prescription provided in Ref. [8] with EM
form factors from Ref. [30]. To illustrate the fit, the ✓ dependence of the data was removed using Eq. 2,
and the asymmetries were divided by A0 (defined in Eq. 3). The resulting plot conforms to Eq. 4 and
illustrates the quality of the global fit. The intercept of the fit at Q2 = 0 is Qp

W (PVES)=0.064 ± 0.012.
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Figure 3. Global fit result (solid line)
presented in the forward angle limit
derived from this measurement as well as
other PVES experiments up to Q2 = 0.63
(GeV)2, including proton, helium and
deuterium data. The additional
uncertainty arising from the rotation is
indicated by outer error bars on each
point, visible only for the more backward
angle data. The yellow shaded region
indicates the uncertainty in the fit. Qp

W is
the intercept of the fit. The SM
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QWp in SM at tree-level: accidentally suppressed
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Weak	charge	with	radia5ve	correc5ons:	EW	boxes

Qp, 1�loop
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e) + ⇤WW + ⇤ZZ + ⇤�Z

Marciano, Sirlin ’83,84; Erler, Musolf ’05

Hadronic effects under control

Non-universal correction - depends on kinematics and hadronic structure
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EW running of sin2θW



𝛾Z-Box	from	Dispersion	Rela5ons
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γZ-box from forward dispersion relation

MG, Horowitz ’09; MG, Horowitz, Ramsey-Musolf ‘11

Imaginary part = on-shell states = data

Real part: from unitarity + analyticity + symmetries

Inclusive PV data 

- little available
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Energy	dependence	of	𝛾Z-Box	from	Dispersion	Rela5ons
Vector box

Not much data on FγZ1,2 available - relate to e.-m. F1,2

As for running sin2θW from 𝛂: need flavor separation + rotation

Unfortunately, unlike for e+e- -> hadrons this flavor separation 

can only be done in very limited kinematical range 

-> larger model dependence
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Three groups estimated 𝛾ZV box for QWeak energy E = 1.165 GeV:

Central values agree, some discussion on the errors
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For QWeak energy E = 1.165 GeV 

Main contribution: W < 5 GeV, Q² < 2 GeV²

Importance of the input for the integral:

For P2 energy E = 155 MeV 

Main contribution: W < 2.5 GeV, Q² < 1 GeV²

Energy	dependence	of	𝛾Z-Box	from	Dispersion	Rela5ons
Model dependence stems from that in the flavor separation/rotation

Steep energy dependence of the 𝛾ZV box (much smaller for smaller energy)

Flavor (isospin) structure in the resonance region well understood

- Furnished a strong motivation for the P2 experiment in Mainz at E=155 MeV

Frank’s talk today

Energy dependence required 

a formal redefinition of the weak charge

Qp
W = lim

E,Q2!0

"
�4

p
2⇡↵

GFQ2
Aexp

#

Re⇤V
�Z(E = 155MeV) = (1.1± 0.18)⇥ 10�3



Re⇤A
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dQ2
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0
dW 2C(E,W,Q2)F �Z

3 (W,Q2)

𝛾Z-Box	from	Dispersion	Rela5ons
Axial box - additional energy dependence
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To evaluate the integral need F3 for M<W<∞, 0<Q2<∞

2

exchanged boson, respectively. The F γZ
1,2 contributions

to ✷γZ involve the vector hadron coupling of the Z, and
were recently computed in Refs. [7–10].
Our focus here is on the F γZ

3 contribution involving
the axial-vector hadron coupling of the Z. Following an
analogous derivation in Ref. [8], we can write

ℑm✷
A
γZ(E) =

1

(2ME)2

∫ s

M2

dW 2

∫ Q2

max

0
dQ2

×
ve(Q2)α(Q2)F γZ

3

1 +Q2/M2
Z

(

2ME

W 2 −M2 +Q2
−

1

2

)

,(6)

with s = M2+2ME and Q2
max = 2ME(1−W 2/s). The

real part is determined from the dispersion relation

ℜe✷A
γZ(E) =

2

π

∫

∞

0
dE′

E′

E′2 − E2
ℑm✷

A
γZ(E

′), (7)

which accounts for both the box and crossed-box terms.
Unlike the vector hadronic correction ℜe✷V

γZ(E), which
vanishes at E = 0, the axial-vector hadronic correction
ℜe✷A

γZ(E) remains finite, and is dominant in atomic par-
ity violation at very low electron energies [11].
We incorporate one further improvement over earlier

calculations by allowing for the Q2 dependence of α(Q2)
and sin2 θW (Q2) = κ(Q2) ŝ2 in Eq. (6) due to boson self-
energy contributions. Both quantities vary significantly
over the range of Q2 relevant to these integrals. The pho-
ton vacuum polarization expression is well-known, and
expressions for the universal fermion and boson contribu-
tions to κ(Q2) are given in Ref. [12]. Following Ref. [3],
we use effective quark masses to reproduce the hadronic

contribution of∆α(5)
had(M

2
Z) = 0.02786 obtained from dis-

persion relations [4], yielding κ(0) = 1.030. This is suf-
ficiently accurate for the purpose of calculating the box
contributions. In the numerical results that follow, the
effect of using α(Q2) and ve(Q2) reduces the total contri-
bution to Eq. (7) by 17% relative to using α and ve(M2

Z).
The imaginary part of ✷A

γZ can be split into three re-
gions: (i) elastic (el) with W 2 = M2; (ii) resonances (res)
with (M +mπ)2 ≤ W 2 <

∼ 4 GeV2; and (iii) deep inelastic
(DIS), with W 2 > 4 GeV2. Contributions from region
(i) can be written in terms of the elastic form factors as

F γZ(el)
3 (Q2) = −Q2Gp

M (Q2)GZ
A(Q

2)δ(W 2 −M2). (8)

For the proton magnetic form factor Gp
M we use the re-

cent parametrization from Ref. [13] (the results are sim-
ilar if one uses a dipole with mass 0.84 GeV), and take
the axial-vector form factor to be GZ

A(Q
2) = −1.267/(1+

Q2/M2
A)

2 with MA = 1.0 GeV. A virtue of the dipole
forms is that the integrals (6) and (7) can be performed
analytically, which provides a useful cross-check.
To simplify notation in what follows, we denote ℜe✷A

γZ

by ✷
A
γZ , since that is the quantity of interest in Eq. (1).

The result for the elastic contribution ✷
A(el)
γZ (E) is shown
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FIG. 1: Real part of ✷A
γZ(E) as a function of incident electron

energy E. Shown are the elastic (solid) and resonance (dot-
dashed) contributions. For the DIS part, the high-Q2, n ≥ 3
term (dotted) is negligibly small. The two Q2 < 1 GeV2

estimates (long and short dashes) show a very mild E depen-
dence. Not shown is the dominant high-Q2, n = 1 moment,
which is 32.8× 10−4, and is independent of E.

in Fig. 1. It agrees exactly with the direct loop calcula-
tions of ✷A

γZ in Refs. [14, 15], in which the intermediate
nucleon is off-shell. It also agrees exactly at E = 0 with
the value Lm = 2.04 if the parameters are adjusted to
correspond to those of MS [3].

For the resonance contributions ✷
A(res)
γZ from region

(ii), we use the parametrizations of the transition form
factors from Lalakulich et al. [16], but with modified
isospin factors appropriate to γZ. These form factors
have been fitted to the Jefferson Lab pion electroproduc-
tion data (vector part) and pion production data in ν
and ν̄ scattering at ANL, BNL and Serpukhov (axial-
vector part). The parametrizations include the lowest
four spin-1/2 and 3/2 states in the first and second res-
onance regions, up to Q2 = 3.5 GeV2. At larger Q2 the
resonance contributions are suppressed by the Q2 depen-
dence of the transition form factors, which is stronger
for the dominant ∆(1232) resonance than for the higher-
mass resonances [16]. The resulting resonance contribu-

tion ✷
A(res)
γZ (0) is smaller than the elastic term at E = 0,

but decreases less rapidly with increasing energy. Vary-
ing the Q2 dependence of the poorly determined axial-
vector form factors has a negligible effect on these results.
To compute the DIS contributions from region (iii) it

is convenient to interchange the order of integration in
(6) and (7), in which case the integral over energy can be
performed analytically [9]. A further change of variable
from W 2 to Bjorken x = Q2/(W 2 −M2 +Q2) gives

✷
A(DIS)
γZ (E) =

2

π

∫

∞

0
dQ2 ve(Q2)α(Q2)

Q2(1 +Q2/M2
Z)

×

∫ xmax

0
dx F γZ

3 (x,Q2) f(r, t), (9)

f(r, t) =
1

t2
[

log
(

1− t2/r2
)

+ 2t tanh−1 (t/r)
]

,

Marciano, Sirlin ‘84

The part of the Q2 integral above Λ2 >> M2

is model-independent: 

scattering on perturbative quarks

Can evaluate the low-Q2 integral explicitly:


elastic form factors; resonances; 

higher moments of quark PDFs

Blunden et al. ‘11

Update of the old result

Re⇤A
�Z(E = 0) = (5.2± 0.5)⇥ 10�3 ! Re⇤A

�Z(E = 1.165GeV) = (3.7± 0.4)⇥ 10�3
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QWEAK final result: QpW = 0.0719 ± 0.0045 (error mostly experimental)

Status	of	the	energy-dependent	𝛾Z-Box
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transfer Q2 and the electron energy. Other one-loop cor-
rections depend on Q2 only and can therefore be factor-
ized and partly absorbed into universal correction factors
as shown above in Eq. (79).

It has been observed in Refs. [97–99] that the energy
dependence of the heavy-boson box graphs associated with
WW and ZZ exchange induces corrections of order GFE2

i ,
rather than ⇠ ↵em/⇡. For electron energies up to a few
GeV these energy-dependent contributions can be safely
neglected. The constant terms, however, are numerically
large. Since they are dominated by contributions from
loop momenta of the order of mZ , their calculation in the
framework of perturbation theory is safe with a reliable
uncertainty estimate [93].

The �� box does not contain large logarithms and is
known to vanish at small momentum transfer as it can
only renormalize the charge radius of the proton but not
its charge. Since it only corrects the parity-conserving
part of the amplitude, its e↵ect on the PV asymmetry
will also be multiplied by the proton’s weak charge. All
in all, it is natural to expect a correction to APV of the
order of (↵em/⇡)(Q2/E2

i )QW(p) due to ��-box graphs.
This amounts to a negligible correction of order O(10�5)
for the kinematical conditions at the P2 experiment that
can be accommodated in the uncertainty associated with
the kinematically suppressed correction term F (Ei, Q2).
With these observations, the energy dependence of the
boxes present in Eq. (78) reduces to that of the �Z box,

�⇤(Ei, Q
2) � �⇤(0, 0) = ⇤�Z(Ei, Q

2) �⇤�Z(0, 0). (82)

The �Z-box graph contains a large logarithm log m2
Z

⇤2

where ⇤ ⇠ 1 GeV is a typical hadronic mass scale. The co-
e�cient in front of this large logarithm is energy-indepen-
dent up to corrections ⇠ GFE2

i and can be calculated pre-
cisely using quark sum rules [97,98]. The presence of the
hadronic mass scale ⇤ signals the sensitivity of the �Z box
to the hadronic structure, and this sensitivity was used to
estimate the hadronic structure-related uncertainty [93].
However, early studies described in the references given
above had assumed that the energy dependence of the �Z
box was negligible, ⇠ GFE2

i , following the pattern of the
heavy boson boxes.

Consecutively, the energy dependence of the �Z box
was addressed in Ref. [100] in the framework of forward
dispersion relations. It was shown that the energy depen-
dence of ⇤�Z is much more significant than anticipated.
It has been the subject of active scrutiny in the theory
community [91,101–103,18,104]. The dispersive method
for calculating ⇤�Z is per se model-independent, relating
the �Z box to an integral over measurable unpolarized in-
terference structure functions F �Z

1,2,3. Nonetheless, due to
the lack of reliable experimental data for these structure
functions one is forced to introduce model assumptions to
define the required input in unmeasured regions. While
di↵erent groups agree on the central value of ⇤�Z(Ei)
within errors, this model dependence leads to a discrep-
ancy in the uncertainty estimate.

In Fig. 71 the energy dependence of the �Z box is
shown. It is obtained as a sum of its vector part ⇤V

�Z
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Fig. 71. Energy dependence of the �Z box graph, Eq. (82) at
Q

2 = 0, and its uncertainty band.

calculated in Ref. [18] and its axial-vector part, ⇤A
�Z ob-

tained in Ref. [105,103,106] at zero momentum transfer.
The respective uncertainties are added in quadrature. The
extrapolation from the actual value of Q2 corresponding
to the kinematics at P2 down to Q2 = 0 is done according
to Ref. [91]. Due to the tiny value of Q2

⇡ 0.0045 GeV2

this extrapolation leads to a numerically negligible e↵ect,
both on the central value and its uncertainty. For the kine-
matics at P2, the energy-dependent contribution amounts
to

⇤�Z(Ei = 155MeV, Q2 = 0) � ⇤�Z(0, 0)

= (1.06 ± 0.32) ⇥ 10�3 (83)

and the uncertainty is dominated by that due to the e↵ec-
tive axial charge of the nucleon seen by charged leptons,
also referred to as the anapole moment,

�⇤A
�Z = 0.27 ⇥ 10�3, (84)

�⇤V
�Z = 0.18 ⇥ 10�3. (85)

A measurement at backward angles as described in section
7.3 will allow to reduce the uncertainty due to the anapole
moment considerably, �⇤A

�Z ! 0.07⇥10�3. Assuming that
this precision goal is achieved, the energy-dependent cor-
rection from the �Z box will change to

⇤�Z(Ei = 155MeV, Q2 = 0) � ⇤�Z(0, 0)

= (1.06 ± 0.19) ⇥ 10�3 (86)

with a reduced uncertainty. This estimate was used in
Sect. 2, Tab. 2 in the summary of the uncertainty bud-
get.

6.2 QED corrections

Electromagnetic corrections are parity conserving and do
not a↵ect the proton’s weak charge. However, the relation

QWEAK energy:

P2 energy:

Re⇤A+V
�Z (E = 1.165GeV) = (9.3± 1.5)⇥ 10�3 (mostly vector box)

Re⇤A+V
�Z (E = 155MeV) = (5.4± 0.4)⇥ 10�3 (mostly axial box)

P2 expectation: QpW = 0.0713 ± 0.0013



Summary

• Running sin2θW in SM is known very precisely


• Bridges low and high energies, 

 light and heavy BSM


• Proton’s weak charge: enhanced sensitivity


• Electroweak boxes play a major role at low energies

 (same for Vud extraction, 00νβ decay, …)


