Toward precise determination of resonant hadron scattering amplitudes from lattice QCD

John Bulava

University of Southern Denmark CP3-Origins

SDU⁶

Cosmology & Particle Physics

CIPANP 2018 Palm Springs, CA June 1, 2018

Why study hadron-hadron scattering amplitudes?

 0.1 \blacktriangleright Low energy pion, nucleon scattering:

 \rm{GeV}

 $\pi\pi \to \pi\pi$, $p\pi \to p\pi \Rightarrow \mathcal{O}_{\text{He}}$

- \blacktriangleright Hadron-photon scattering:
 $p\gamma \to p + X$, $\gamma \to \pi\pi$ for $(g 2)_{\mu}$ 1.0
- ➔ Precision Standard Models tests and Exotic hadrons: 10 $B \to K^* \ell^+ \ell^-, \quad X(3872), Z^+(3900), \ldots$
- 1000 → QCD-like Beyond-the-Standard Model theories $f_0(500) \Rightarrow H(125), \quad \pi \Rightarrow G, \quad \rho \Rightarrow \tilde{\rho}$

Lattice QCD

• QCD on a lattice: gauge symmetry preserved!

 $g(x) \in SU(3)$: $U_{\mu}(x) \rightarrow g^{\dagger}(x) U_{\mu}(x) g(x)$ $\psi(x) \rightarrow g(x)\psi(x)$

Monte Carlo Simulations require imaginary time:

$$
t \to it
$$
, $e^{iS} \to e^{-S}$

Scattering amplitudes in lattice \overline{QCD}

- In imaginary time, $\langle 0|T|\hat{\mathcal{O}}'(x')\hat{\mathcal{O}}^\dagger(x)||0\rangle$ generally contains no info about on-shell amplitudes. L. Maiani, M. Testa, *Phys. Lett.* **B245** (1990) 585
- Finite volume method: below $n \geq 3$ hadron thresholds:

$$
\det[1 - K(E_{\rm cm})B(L\mathbf{q}_{\rm cm})] + \mathcal{O}(e^{-ML}) = 0
$$

$$
S = (1 - iK)^{-1}(1 + iK)
$$

M. Lüscher, *Nucl. Phys.* **B354** (1991) 531

- Determinant over total angular momentum, channel, and total spin
- Algorithmic advances in quark propagation lead to improved statistical precision in C. Morningstar, JB, J. Foley, K. Juge, D. Lenkner, M. Peardon, C. H. Wong, *Phys. Rev.* **D83** (2011) 114505; M. Peardon, JB, J. Foley, C. Morningstar, J. Dudek, R. Edwards, B. Joo, H.W. Lin, D. Richards, K. Juge, *Phys. Rev.* **D80** (2009) 054506

Systematic errors in lattice energies

In order to provide QCD results, systematics must be assessed:

Lattice Spacing:

 $E_{\text{CM}}^{\text{lat}} = E_{\text{CM}}^{\text{QCD}} + \text{O}(a^2)$

(Residual) Finite volume effects

M. Bruno, T. Korzec, S. Schaefer, *Phys. Rev.* **D95** 074504 (2017)

- Unphysical quark masses (dependence on $m_{u,d}, m_s$ also interesting)
- Energy determination: asymptotic-time limit in temporal correlators

Many ensembles required

- Coordinated Lattice Simulations (CLS): broad EU effort
- 4 lattice spacings $a \geq 0.05$ fm, pion masses $m_{\pi} \gtrsim 190 \text{MeV}$
- Two $N_f = 2 + 1$ chiral limits: $m_s = const.$ Tr $M = const.$

Elastic isovector pion-pion scattering

- Identical spinless particles
- Well-understood low-lying resonance: $\rho(770), (I^G)J^P = (1^+)1^-$
- Pheno. interest: how does the pole move?
	- Filled: $f_0(500)$
	- Open: $\rho(770)$

C. Hanhart, J.R. Pelaez, G. Rios Phys.Lett. B739 (2014) 375-382

Symmetries of the finite-volume

- More total momenta => more amplitude points
- Finite volume symmetry groups O_h^D , C_{4v}^D , C_{2v}^D , C_{3v}^D for (resp.) $\frac{L}{2\pi}$ **P**_{tot} = (0,0,0), (0,0,n), (0,n,n), (n,n,n)
- Relevant irreps:

Elastic pion-pion workflow

- Determine several $E_{cm} < 4m_{\pi}$ in each irrep.
- Neglect $\ell \geq 3$. Each energy gives

$$
\hat{K}_{11}^{-1} = q_{\text{cm}}^3 K_{11}^{-1} = q_{\text{cm}}^3 \cot \delta_1(E_{\text{cm}})
$$

• Like experiment, fit points to functional form: Relativistic Breit-Wigner

$$
\left[\frac{q_{\text{cm}}}{m_{\pi}}\right]^3 \cot \delta_1(E_{\text{cm}}) = \left(\frac{m_{\rho}^2}{m_{\pi}^2} - \frac{E_{\text{cm}}^2}{m_{\pi}^2}\right) \frac{6\pi E_{\text{cm}}}{g_{\rho\pi\pi}^2 m_{\pi}}
$$

B. Hörz, *Ph.D. thesis*; B. Hörz, JB, C. Andersen, C. Morningstar, *in prep.*

Scale determination/uncertainties from M. Bruno, T. Korzec, S. Schaefer, *Phys. Rev.* **D95** 074504 (2017)

Isovector *p*-wave results: D200

$$
(L = 4.16 \text{fm}, a = 0.065 \text{fm}, m_{\pi} = 200 \text{MeV})
$$

 $m_{\rho} = 780(8)(8)$ MeV

Higher partial waves

• Exhaustive determination of *B*-matrix elements

C. Morningstar, JB, B. Singha, R. Brett, J. Fallica, A. Hanlon, B. Hörz, Nucl. Phys. B924 (2017) 477

• All partial waves $\ell \leq 6$, all total spin $s \leq 7/2$, all irreps.

● Published C++ code for evaluation. Example *B-*matrix element:

$$
B^{A_1, oa}(\ell_1 = \ell_2 = 6, n_1 = n_2 = 1) = R_{00} - \frac{2\sqrt{5}}{55}R_{20} - \frac{96}{187}R_{40} - \frac{80\sqrt{13}}{3553}R_{60}
$$

+
$$
\frac{445\sqrt{17}}{3553}R_{80} + \frac{15\sqrt{24310}}{3553}R_{88} - \frac{498\sqrt{21}}{7429}R_{10,0} + \frac{6\sqrt{510510}}{7429}R_{10,8}
$$

+
$$
\frac{2178}{37145}R_{12,0} + \frac{66\sqrt{277134}}{37145}R_{12,8}
$$

Higher partial waves

• Fit results w/o f-wave contribution: (aniso. data)

$$
\frac{m_{\rho}}{m_{\pi}} = 3.354(24), \qquad g_{\rho\pi\pi} = 6.01(26), \qquad \frac{\chi^2}{d.o.f} = 1.02
$$

 \sim

• Fit results with f-wave contribution:

$$
\frac{m_{\rho}}{m_{\pi}} = 3.353(24), \qquad g_{\rho\pi\pi} = 6.00(26),
$$

$$
m_{\pi}^7 a_3 = -0.0003(24), \qquad \frac{\chi^2}{d.o.f} = 1.02
$$

• Pheno. determination: $m_{\pi}^7 a_3 = 6.3(4) \times 10^{-5}$ Pelaez, Yndurian '05

Timelike pion form factor

- Low-energy hadron vacuum polarization $\Pi(q^2)$: important theoretical uncertainty in $(g-2)_\mu$
- Optical Theorem:

$$
\text{Im}\,\Pi(s)=\frac{\alpha(s)}{3}R(s)
$$

$$
\frac{1}{\sqrt{\pi}}\left(1-\frac{1}{1-\frac{1}{\sqrt{\pi}}}\right)^{\frac{1}{\pi}}
$$

$$
R(s) = \sigma_{\text{tot}}(e^+e^- \to \text{hadrons}) \left(\frac{4\pi\alpha(s)^2}{3s}\right)^{-1}
$$

At low energies, given by the time-like pion form-factor

$$
R(s) = \frac{1}{4} \left(1 - \frac{4m_{\pi}^2}{s} \right)^{\frac{3}{2}} |F_{\pi}(s)|^2, \ 4m_{\pi}^2 < s < 9m_{\pi}^2
$$
\n³

Feng, et al. `15

$$
(L = 3.12 \text{fm}, a = 0.065 \text{fm}, m_{\pi} = 280 \text{MeV})
$$

- Dark points: N200 $(L = 3.12 \text{fm}, a = 0.065 \text{fm}, m_{\pi} = 280 \text{MeV})$
- $(L = 3.65 \text{fm}, a = 0.076 \text{fm}, m_{\pi} = 280 \text{MeV})$ **Gray points: N401**
- Finite volume and cutoff effects not visible with our current statistics.

Mass/coupling summary

- Our 0.05fm point is preliminary (incomplete analysis)
- Gray points from: Z. Fu, L. Wang, Phys. Rev. D94 (2016) 034505
	- 3-flavor MILC ensembles, scale well-determined.
	- Different chiral trajectory: $m_s = const.$

Isodoublet kaon-pion scattering

• Two low-lying $I = 1/2$ resonances (with strangeness = 1):

 $K^*(892): J^P = 1^ K_0^*(800): J^P=0^+$

- Non-identical particles: more partial wave mixing!
- No amplitude points for each energy: must fit simultaneously s-wave, p-wave (d-wave?).
- $K^*(892)$ important for BSM tests; nature of $K_{0}^{*}(800)$ unclear.

A. Hanlon, *PhD thesis,* 2017; R. Brett, JB, J. Fallica, A. Hanlon, B. Hoerz, C. Morningstar, arXiv:1802.03100

Meson-baryon scattering

- Additional complication: non-zero spin!
- Signal-to-noise problem: difficult to attain statistical precision
- **Examples:**
	- Delta(1232):
		- benchmark baryon resonance calculation.
		- D(1232) form-factors of pheno. interest for DUNE, JLAB.
	- Lambda(1405):
		- Coupled channels: $\Sigma \pi$, KN , $\Lambda \eta$
		- Nature of pole(s) unsettled, relevant for nuclear matter.

Delta(1232) setup

• Choose $I=3/2$ irreps where $\ell(J^P)=1(3/2^+)$ is the lowest partial wave

Neglecting d-wave Delta(1700), relying on orbital angular momentum threshold suppression of d-wave.

Lambda(1405) setup

- In each irrep, need interpolators for $\;\;\Lambda,\;\Sigma-\pi,\;K-N,\;\Lambda-n$
- Focus on (strangeness = -1) irreps containing $I(J^p) = 0(1/2^{-})$

Resonances: $\Lambda(1405):1/2^-,\, \Lambda(1520):3/2^-,\, \Lambda(1600):1/2^+$

Preliminary elastic results

 $\Lambda(1405) \to \Sigma \pi$ $(L = 3.12 \text{fm}, a = 0.065 \text{fm}, m_{\pi} = 280 \text{MeV})$

 $m_R = 1399(24)$ MeV

B. Hörz, C. Andersen, JB, M. Hansen, D. Mohler, C. Morningstar, H. Wittig, *in prep.*

Operator overlaps

- 1
. Qualitative information about the spectrum
- Definition:

 $A_{in} = |\langle 0|\mathcal{O}_i|n\rangle|$

- **Observations:**
	- Ground state Lambda present as expected.
	- Where is Lambda(1405) in flight?
	- Where are Lambda(1520) and Lambda(1600)?

- Algorithmic advances enable precise finite-volume energies.
- CLS ensembles enable exploration of continuum, chiral, and infinite volume limits
- Simple resonance photoproduction amplitude: timelike pion form factor
- Cutoff, finite volume, and higher partial wave effects under control in pion-pion scattering.
- First progress in meson-baryon: Delta(1232), Lambda(1405). More data/other systems to come.