Toward precise determination of resonant hadron scattering amplitudes from lattice QCD

John Bulava

University of Southern Denmark CP3-Origins



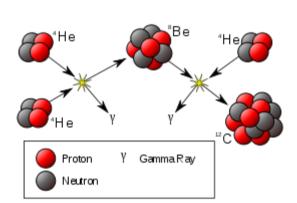
CIPANP 2018 Palm Springs, CA June 1, 2018

Why study hadron-hadron scattering amplitudes?

GeV.

0.1 \rightarrow\text{Low energy pion, nucleon scattering:

$$\pi\pi \to \pi\pi, \, p\pi \to p\pi \quad \Rightarrow \quad \bullet$$



1.0 Hadron-photon scattering:
$$p\gamma \to p + X, \quad \gamma \to \pi\pi \text{ for } (g-2)_{\mu}$$

→ Precision Standard Models tests and Exotic hadrons:

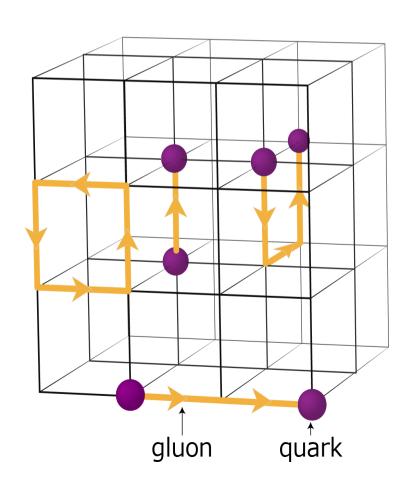
$$B \to K^* \ell^+ \ell^-, \quad X(3872), Z^+(3900), \dots$$

1000 > QCD-like Beyond-the-Standard Model theories

$$f_0(500) \Rightarrow H(125), \quad \pi \Rightarrow G, \quad \rho \Rightarrow \tilde{\rho}$$

Lattice QCD

QCD on a lattice: gauge symmetry preserved!



$$g(x) \in \mathrm{SU}(3)$$
:

$$U_{\mu}(x) \to g^{\dagger}(x)U_{\mu}(x)g(x)$$
$$\psi(x) \to g(x)\psi(x)$$

Monte Carlo Simulations require imaginary time:

$$t \to it$$
, $e^{iS} \to e^{-S}$

Scattering amplitudes in lattice QCD

- In imaginary time, $\langle 0|T[\hat{\mathcal{O}}'(x')\hat{\mathcal{O}}^{\dagger}(x)]|0\rangle$ generally contains no info about on-shell amplitudes. L. Maiani, M. Testa, Phys. Lett. B245 (1990) 585
- Finite volume method: below $n \geq 3$ hadron thresholds:

$$\det[1 - K(E_{cm})B(L\mathbf{q}_{cm})] + O(e^{-ML}) = 0$$
$$S = (1 - iK)^{-1}(1 + iK)$$

M. Lüscher, Nucl. Phys. B354 (1991) 531

- Determinant over total angular momentum, channel, and total spin
- Algorithmic advances in quark propagation lead to improved statistical precision in $E_{
 m cm}$

C. Morningstar, JB, J. Foley, K. Juge, D. Lenkner, M. Peardon, C. H. Wong, *Phys. Rev.* **D83** (2011) 114505;

M. Peardon, JB, J. Foley, C. Morningstar, J. Dudek, R. Edwards, B. Joo, H.W. Lin, D.

Richards, K. Juge, *Phys. Rev.* **D80** (2009) 054506

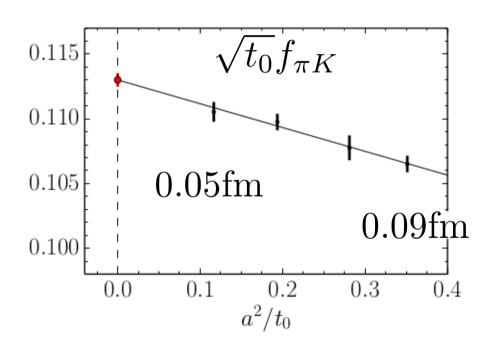
Systematic errors in lattice energies

In order to provide QCD results, systematics must be assessed:

Lattice Spacing:

$$E_{\rm CM}^{\rm lat} = E_{\rm CM}^{\rm QCD} + O(a^2)$$

• (Residual) Finite volume effects



M. Bruno, T. Korzec, S. Schaefer, *Phys. Rev.* **D95** 074504 (2017)

- Unphysical quark masses (dependence on $m_{u,d},\,m_s\,$ also interesting)
- Energy determination: asymptotic-time limit in temporal correlators

Many ensembles required

- Coordinated Lattice Simulations (CLS): broad EU effort
- 4 lattice spacings $a \geq 0.05 {
 m fm}$, pion masses $m_\pi \gtrsim 190 {
 m MeV}$
- Two $N_{\rm f}=2+1$ chiral limits: $m_s=const.$ TrM=const.



Elastic isovector pion-pion scattering

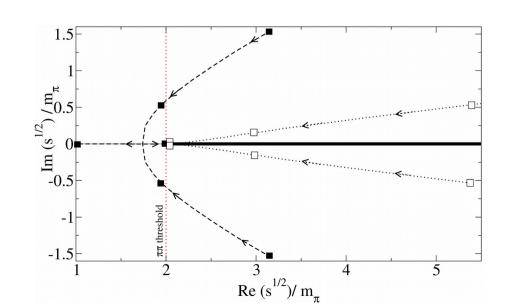
- Identical spinless particles
- Well-understood low-lying resonance:

$$\rho(770), (I^G)J^P = (1^+)1^-$$

• Pheno. interest: how does the pole move?

• Filled: $f_0(500)$

• Open: $\rho(770)$



Symmetries of the finite-volume

- More total momenta => more amplitude points
- Finite volume symmetry groups $O_h^D, C_{4v}^D, C_{2v}^D, C_{3v}^D$ for (resp.) $\frac{L}{2\pi}\mathbf{P}_{\mathrm{tot}} = (0,0,0), \, (0,0,n), \, (0,n,n), \, (n,n,n)$

• Relevant irreps:

mom.	irrep	partial waves
(0,0,0)	T_{1u}^+	$1,3,5^2,\dots$
(0, 0, n)	A_1^+	$1,3,5^2,\dots$
	E^+	$1, 3^2, 5^3, \dots$
$\overline{(0,n,n)}$	A_1^+	$1, 3^2, 5^3, \dots$
	B_1^+	$1, 3^2, 5^3, \dots$
	B_2^+	$1, 3^2, 5^3, \dots$
$\overline{(n,n,n)}$	A_1^+	$\overline{1,3^2,5^2,\dots}$
	E^+	$1, 3^2, 5^4, \dots$

Elastic pion-pion workflow

- Determine several $E_{\rm cm} < 4m_\pi$ in each irrep.
- Neglect $\ell \geq 3$. Each energy gives

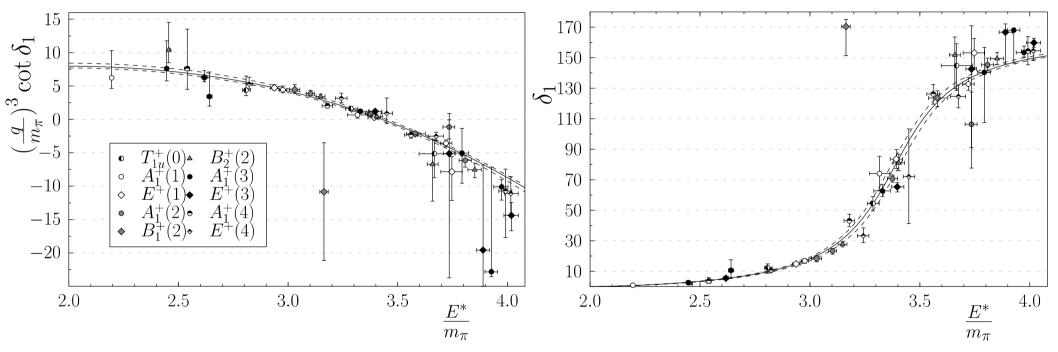
$$\hat{K}_{11}^{-1} = q_{\rm cm}^3 K_{11}^{-1} = q_{\rm cm}^3 \cot \delta_1(E_{\rm cm})$$

Like experiment, fit points to functional form:
 Relativistic Breit-Wigner

$$\left[\frac{q_{\rm cm}}{m_{\pi}}\right]^{3} \cot \delta_{1}(E_{\rm cm}) = \left(\frac{m_{\rho}^{2}}{m_{\pi}^{2}} - \frac{E_{\rm cm}^{2}}{m_{\pi}^{2}}\right) \frac{6\pi E_{\rm cm}}{g_{\rho\pi\pi}^{2} m_{\pi}}$$

Isovector *p*-wave results: D101

$$(L = 5.53 \text{fm}, a = 0.086 \text{fm}, m_{\pi} = 220 \text{MeV})$$



$$\frac{m_{\rho}}{m_{\pi}} = 3.42(2), \qquad g_{\rho\pi\pi} = 6.05(11), \qquad \frac{\chi^2}{d.o.f} = 0.9$$

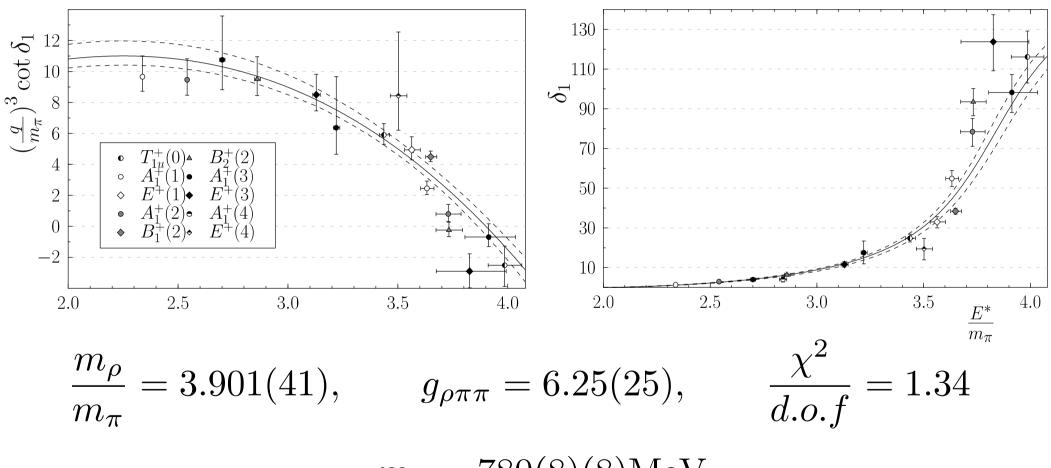
$$m_{\rho} = 763(9) \text{MeV}$$

B. Hörz, Ph.D. thesis; B. Hörz, JB, C. Andersen, C. Morningstar, in prep.

Scale determination/uncertainties from M. Bruno, T. Korzec, S. Schaefer, *Phys. Rev.* **D95** 074504 (2017)

Isovector *p*-wave results: D200

$$(L = 4.16 \text{fm}, a = 0.065 \text{fm}, m_{\pi} = 200 \text{MeV})$$



$$m_{\rho} = 780(8)(8) \text{MeV}$$

Higher partial waves

Exhaustive determination of B-matrix elements

C. Morningstar, JB, B. Singha, R. Brett, J. Fallica, A. Hanlon, B. Hörz, Nucl. Phys. B924 (2017) 477

• All partial waves $\ell \le 6$, all total spin $s \le 7/2$, all irreps.

 Published C++ code for evaluation. Example B-matrix element:

$$B^{A_{1},\text{oa}}(\ell_{1} = \ell_{2} = 6, n_{1} = n_{2} = 1) = R_{00} - \frac{2\sqrt{5}}{55}R_{20} - \frac{96}{187}R_{40} - \frac{80\sqrt{13}}{3553}R_{60} + \frac{445\sqrt{17}}{3553}R_{80} + \frac{15\sqrt{24310}}{3553}R_{88} - \frac{498\sqrt{21}}{7429}R_{10,0} + \frac{6\sqrt{510510}}{7429}R_{10,8} + \frac{2178}{37145}R_{12,0} + \frac{66\sqrt{277134}}{37145}R_{12,8}$$

Higher partial waves

Fit results w/o f-wave contribution: (aniso. data)

$$\frac{m_{\rho}}{m_{\pi}} = 3.354(24), \qquad g_{\rho\pi\pi} = 6.01(26), \qquad \frac{\chi^2}{d.o.f} = 1.02$$

• Fit results with f-wave contribution:

$$\frac{m_{\rho}}{m_{\pi}} = 3.353(24), \qquad g_{\rho\pi\pi} = 6.00(26),$$

$$m_{\pi}^{7}a_{3} = -0.0003(24), \qquad \frac{\chi^{2}}{d.o.f} = 1.02$$

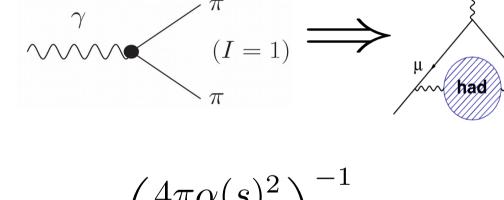
• Pheno. determination: $m_\pi^7 a_3 = 6.3(4) \times 10^{-5}$

Timelike pion form factor

- Low-energy hadron vacuum polarization $\Pi(q^2)$: important theoretical uncertainty in $(g-2)_\mu$

Optical Theorem:

$$\operatorname{Im}\Pi(s) = \frac{\alpha(s)}{3}R(s)$$



Feng, et al. `15

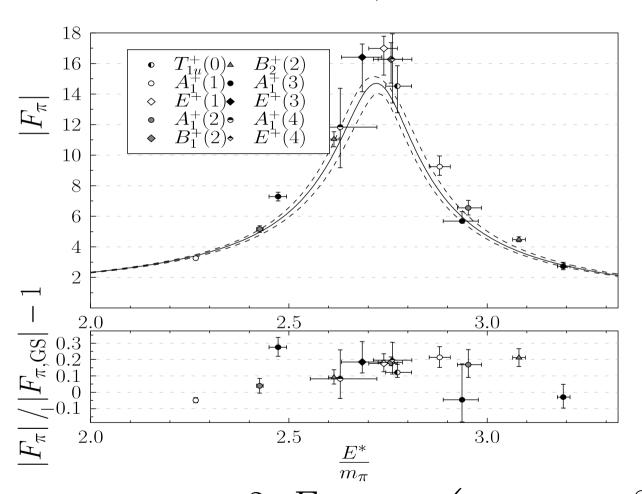
$$R(s) = \sigma_{\text{tot}}(e^+e^- \to \text{hadrons}) \left(\frac{4\pi\alpha(s)^2}{3s}\right)^{-1}$$

• At low energies, given by the time-like pion form-factor

$$R(s) = \frac{1}{4} \left(1 - \frac{4m_\pi^2}{s} \right)^{\frac{3}{2}} |F_\pi(s)|^2, \ 4m_\pi^2 < s < 9m_\pi^2$$
 Jegerlehner and Nyffeler '09; Meyer '11;

Form factor results: N200

$$(L = 3.12 \text{fm}, a = 0.065 \text{fm}, m_{\pi} = 280 \text{MeV})$$

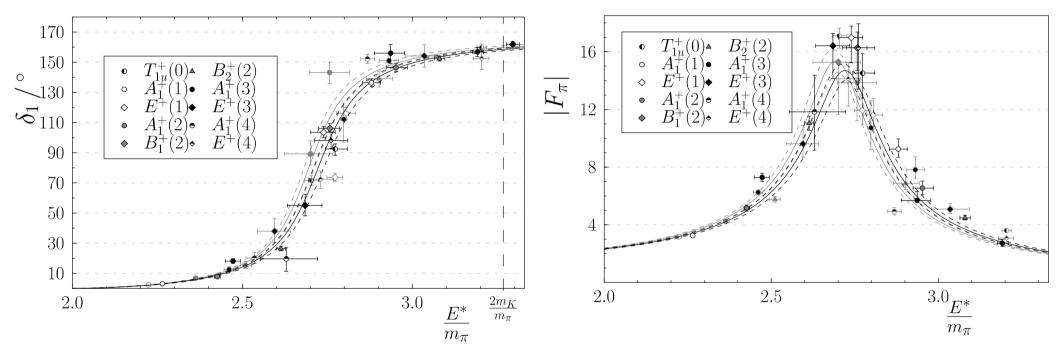


'Fit' is the Gounaris-Sakurai parametrization

Meyer, `11; Feng et al `15;

$$|F_{\pi}(E_{\rm cm})|^2 = \frac{2\pi E_{\rm cm}}{2L^3 p^5} g(\gamma) \left(q\phi'(q) + p \frac{\partial \delta_1}{\partial p} \right) |\langle 0|\hat{j}_{\rm em}|\pi(\vec{p}_1)\pi(\vec{p}_2)\rangle|^2$$

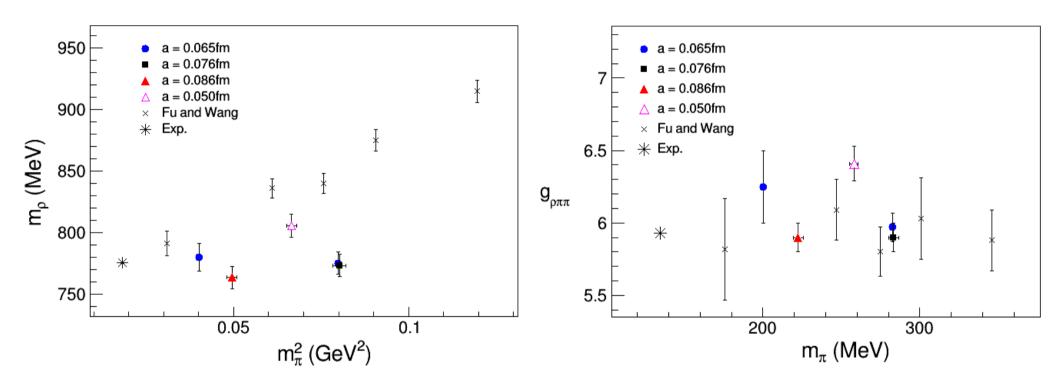
Finite volume/lattice spacing



- Dark points: N200 $~(L=3.12 {
 m fm}, a=0.065 {
 m fm}, ~m_\pi=280 {
 m MeV})$
- Gray points: N401 $(L=3.65\mathrm{fm}, a=0.076\mathrm{fm}, m_\pi=280\mathrm{MeV})$

• Finite volume and cutoff effects not visible with our current statistics.

Mass/coupling summary



- Our 0.05fm point is preliminary (incomplete analysis)
- Gray points from: Z. Fu, L. Wang, Phys. Rev. D94 (2016) 034505
 - 3-flavor MILC ensembles, scale well-determined.
 - Different chiral trajectory: $m_s = const.$

Isodoublet kaon-pion scattering

• Two low-lying I=1/2 resonances (with strangeness = 1):

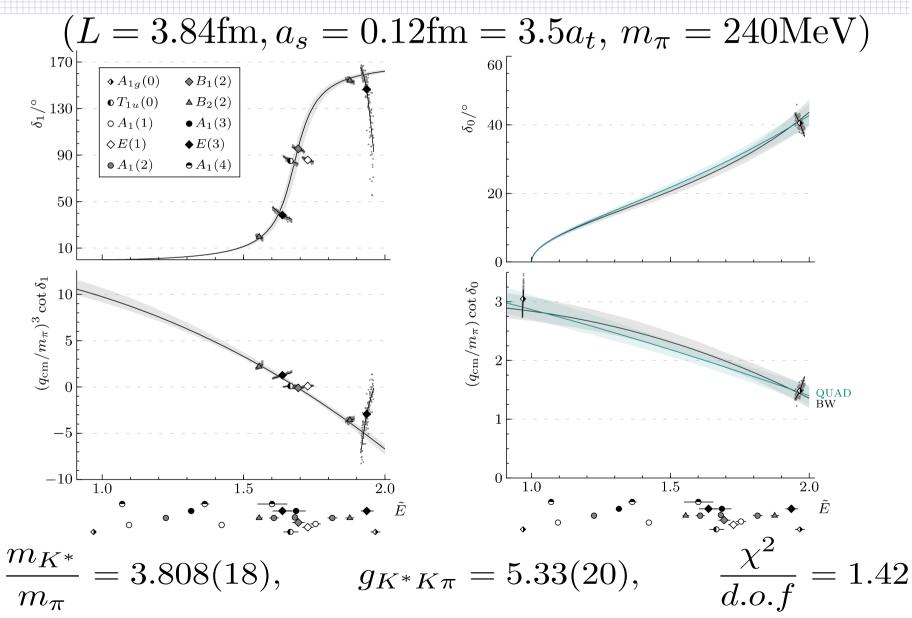
$$K^*(892): J^P = 1^-$$

$$K_0^*(800): J^P = 0^+$$

- Non-identical particles: more partial wave mixing!
- No amplitude points for each energy: must fit simultaneously s-wave, p-wave (d-wave?).
- K*(892) important for BSM tests; nature of K*_o(800) unclear.

mom.	irrep	ℓ
0	$\overline{A_{1g}}$	$0, 4, \ldots$
	T_{1u}	$1, 3, \ldots$
1	A_1	$0, 1, 2, \dots$
	E	$1,2,3,\ldots$
2	A_1	$0, 1, 2, \dots$
	B_1	$1,2,3,\ldots$
	B_2	$1,2,3,\ldots$
3	A_1	$0, 1, 2, \dots$
	E	$1, 2, 3, \dots$
$\overline{}$	A_1	$0, 1, 2, \dots$

Results: s- and p-wave



A. Hanlon, PhD thesis, 2017; R. Brett, JB, J. Fallica, A. Hanlon, B. Hoerz, C. Morningstar, arXiv:1802.03100

Meson-baryon scattering

- Additional complication: non-zero spin!
- Signal-to-noise problem: difficult to attain statistical precision
- Examples:
 - Delta(1232):
 - benchmark baryon resonance calculation.
 - D(1232) form-factors of pheno. interest for DUNE, JLAB.
 - Lambda(1405):
 - Coupled channels: $\Sigma\pi,\,KN,\,\Lambda\eta$
 - Nature of pole(s) unsettled, relevant for nuclear matter.

Delta(1232) setup

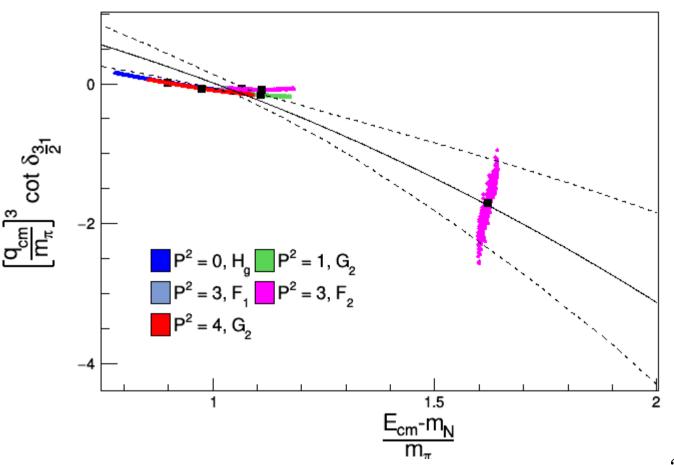
• Choose I=3/2 irreps where $\ell(J^P)=1(3/2^+)$ is the lowest partial wave

mom.	irrep	$\ell(J^p)$
(0,0,0)	H_g	$1(3/2^+), 3(5/2^+), \dots$
	H_u	$2(3/2^-), 2(5/2^-), \dots$
(0, 0, n)	G_2	$1(3/2^+), 2(3/2^-), 2(5/2^-), \dots$
$\overline{(n,n,n)}$	F_1	$1(3/2^+), 2(3/2^-), 2(5/2^-), \dots$
	F_2	$1(3/2^+), 2(3/2^-), 2(5/2^-), \dots$

 Neglecting d-wave Delta(1700), relying on orbital angular momentum threshold suppression of d-wave.

Delta(1232) first results

$$(L = 3.6 \text{fm}, a = 0.075 \text{fm}, m_{\pi} = 280 \text{MeV})$$



$$\frac{m_{\Delta}}{m_{\pi}} = 4.738(47), \qquad g_{\Delta N\pi} = 19.0(4.7), \qquad \frac{\chi^2}{d.o.f} = 1.11$$

C. W. Andersen, JB, B. Hoerz, C. Morningstar, Phys. Rev. D97 (2018) 014506

Lambda(1405) setup

• In each irrep, need interpolators for $~\Lambda,~\Sigma-\pi,~ar{K}-N,~\Lambda-\eta$

• Focus on (strangeness = -1) irreps containing $I(J^p) = 0(1/2^-)$

mom.	irrep	$\ell(J^p)$
(0,0,0)	G_{1g}	$1(1/2^+), 3(7/2^+), \dots$
	G_{1u}	$0(1/2^-), 4(7/2^-), \dots$
	H_u	$2(3/2^-), 2(5/2^-), \dots$
(0,0,n)	G_1	$0(1/2^-), 1(1/2^+), 1(3/2^+), \dots$
	G_2	$1(3/2^+), 2(3/2^-), 2(5/2^-), \dots$
$\overline{(0,n,n)}$	\overline{G}	$0(1/2^-), 1(1/2^+), 1(3/2^+), \dots$
$\overline{(n,n,n)}$	G	$0(1/2^-), 1(1/2^+), 1(3/2^+), \dots$
	F_1	$1(3/2^+), 2(3/2^-), 2(5/2^-), \dots$
	F_2	$1(3/2^+), 2(3/2^-), 2(5/2^-), \dots$

• Resonances: $\Lambda(1405):1/2^-,\,\Lambda(1520):3/2^-,\,\Lambda(1600):1/2^+$

Preliminary elastic results

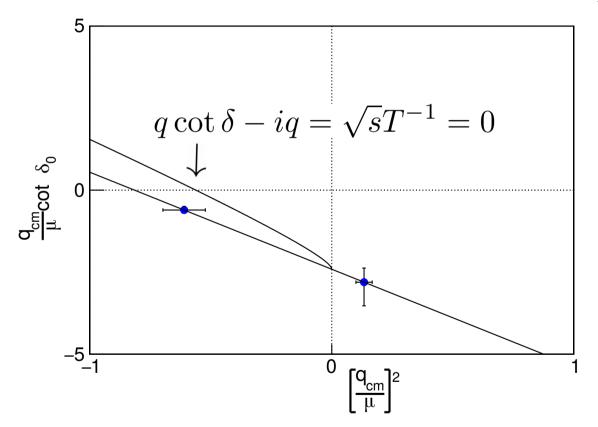
$$\Lambda(1405) \to \Sigma \pi$$

$$\Lambda(1405) \to \Sigma \pi$$
 $(L = 3.12 \text{fm}, a = 0.065 \text{fm}, m_{\pi} = 280 \text{MeV})$

• $G_{1u}(0)$ below inelastic threshold only.

Fit form:

$$\frac{p_{\rm cm}}{\mu} \cot \delta_0 = \frac{1}{a_0 \mu} + \frac{\mu r}{2} \left(\frac{p_{\rm cm}}{\mu}\right)^2$$



$$\frac{m_R}{\mu} = 6.143(77), \qquad \frac{1}{a\mu} = -2.41(57), \qquad \frac{\mu r}{2} = -2.9(1.1)$$

$$m_R = 1399(24) \text{MeV}$$

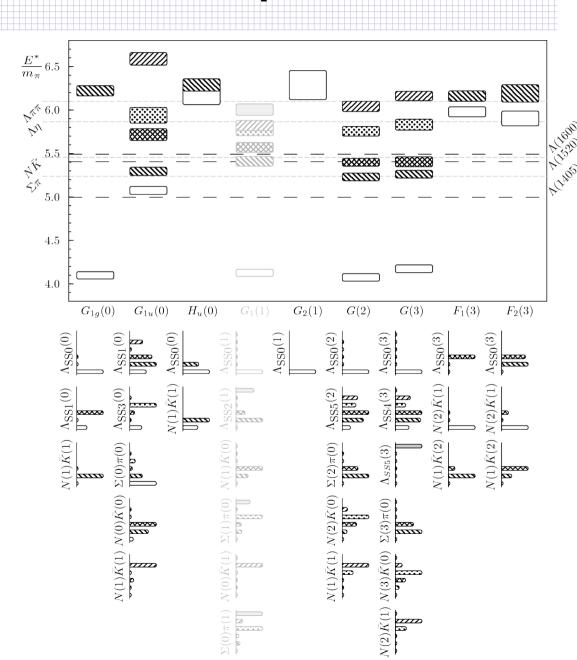
B. Hörz, C. Andersen, JB, M. Hansen, D. Mohler, C. Morningstar, H. Wittig, in prep.

Operator overlaps

- Qualitative information about the spectrum
- Definition:

$$A_{in} = |\langle 0|\mathcal{O}_i|n\rangle|$$

- Observations:
 - Ground state Lambda present as expected.
 - Where is Lambda(1405) in flight?
 - Where are Lambda(1520) and Lambda(1600)?



Conclusions

- Algorithmic advances enable precise finite-volume energies.
- CLS ensembles enable exploration of continuum, chiral, and infinite volume limits
- Simple resonance photoproduction amplitude: timelike pion form factor

- Cutoff, finite volume, and higher partial wave effects under control in pion-pion scattering.
- First progress in meson-baryon: Delta(1232), Lambda(1405). More data/other systems to come.