Standard Model tests in neutron & nuclear β decay

CIPANP 2018

May 2018

Standard Model tests in neutron & nuclear β decay

CIPANP 2018

May 2018

Talk strongly influenced by my various collaborations with V. Cirigliano, A. Falkowski, M. Graesser, J. Martin Camalich, O. Naviliat Cuncic, N. Severijns, ...

[Recent review: MGA, O. Naviliat Cuncic, N. Severijns, 1803.08732]

Motivation

Implications for New Physics?

- Specific model; Beg et al. (1977), Barbieri et al. (1985), Marciano & Sirlin (1987), Hagiwara et al. (1995), Kurylov & Ramsey-Musolf (2002), Marciano (2007), Bauman et al. (2012), ...
- Something more model-indep? EFTs!

Implications for New Physics?

- Specific model; Beg et al. (1977), Barbieri et al. (1985), Marciano & Sirlin (1987), Hagiwara et al. (1995), Kurylov & Ramsey-Musolf (2002), Marciano (2007), Bauman et al. (2012), ...
- Something more model-indep? EFTs!

Competitive probes?

- Other low-E searches
- High-E (LHC!!)

What's an EFT?

- nuclei, e, v
 - hadrons, e, v
 - q, u, d, l, e
 - W, Z, γ, g
 - ...
 - Lorentz
 - QED
 - SU(2) x U(1)
 - Flavour sym?
 - B, L;

Not assumption independent!

E.g. BSM setups with light d.o.f. require a separate study

What's an EFT?

What's an EFT?

α_i : Wilson coefficients.

• Pros:

- Comparison with other probes, under general assumptions;
- Efficiency: the analysis is done once and for all!
- **Connection** with HEP

(Correlated) bounds on the EFT Wilson Coefficients

Comparing experiments

• How to compare with e.g. pion decays?

 \rightarrow

- How to compare different nuclear beta decays?
 - → Effective Lagrangian at the hadron level!

Effective Lagrangian at the quark level!

$$\begin{aligned} -\mathcal{L}_{n \to p e^- \bar{\nu}_e} &= \bar{p} \ n \ (C_S \bar{e} \nu_e - C'_S \bar{e} \gamma_5 \nu_e) \\ &+ \bar{p} \gamma^\mu n \ (C_V \bar{e} \gamma_\mu \nu_e - C'_V \bar{e} \gamma_\mu \gamma_5 \nu_e) \\ &+ \frac{1}{2} \bar{p} \sigma^{\mu\nu} n \ (C_T \bar{e} \sigma_{\mu\nu} \nu_e - C'_T \bar{e} \sigma_{\mu\nu} \gamma_5 \nu_e) \\ &- \bar{p} \gamma^\mu \gamma_5 n \ (C_A \bar{e} \gamma_\mu \gamma_5 \nu_e - C'_A \bar{e} \gamma_\mu \nu_e) \\ &+ \bar{p} \gamma_5 n \ (C_P \bar{e} \gamma_5 \nu_e - C'_P \bar{e} \nu_e) + \text{h.c.} \end{aligned}$$

$$\mathcal{L}_{d \to u \ell^- \bar{\nu}_{\ell}} = -\frac{4G_F V_{ij}}{\sqrt{2}} \left[\bar{\ell}_L \gamma_{\mu} \nu \cdot \bar{u} \gamma^{\mu} d_L + \sum_{\rho \delta \Gamma} \epsilon^{\Gamma}_{\rho \delta} \bar{\ell}_{\rho} \Gamma \nu \cdot \bar{u} \Gamma d_{\delta} \right]$$

- How to compare with LHC experiments?
 - → Effective Lagrangian at the **quark** level at the EW scale!

$$\mathcal{L}_{eff.} = \mathcal{L}_{SM} + rac{1}{\Lambda^2} \sum lpha_i \mathcal{O}_i$$

$$C_i \sim FF \ge \epsilon_i$$

[Lee & Yang'1956]

Hadrons: $n \rightarrow p e^{-} \overline{\nu}$

$$\begin{aligned} -\mathcal{L}_{n \to p e^- \bar{\nu}_e} &= C_V \left(\bar{p} \gamma^\mu n \, + \, \frac{C_A}{C_V} \, \bar{p} \gamma^\mu \gamma_5 n \right) \, \times \, \bar{e} \gamma_\mu \left(1 - \gamma_5 \right) \nu_e \\ &+ C_S \, \bar{p} \, n \, \times \, \bar{e} \left(1 - \gamma_5 \right) \nu_e \, + \, \frac{1}{2} \, C_T \, \bar{p} \sigma^{\mu\nu} n \, \times \, \bar{e} \sigma_{\mu\nu} \left(1 - \gamma_5 \right) \nu_e \\ &- C_P \, \bar{p} \gamma_5 n \, \times \, \bar{e} \left(1 - \gamma_5 \right) \nu_e + \text{h.c.} \end{aligned}$$

+ terms with RH neutrinos

$$-\mathcal{L}_{n \to p e^- \bar{\nu}_e} = \left(C_V \left(\bar{p} \gamma^\mu n + \frac{C_A}{C_V} \bar{p} \gamma^\mu \gamma_5 n \right) \times \bar{e} \gamma_\mu (1 - \gamma_5) \nu_e \right) \\ + C_S \bar{p} n \times \bar{e} (1 - \gamma_5) \nu_e + \frac{1}{2} C_T \bar{p} \sigma^{\mu\nu} n \times \bar{e} \sigma_{\mu\nu} (1 - \gamma_5) \nu_e \\ - C_P \bar{p} \gamma_5 n \times \bar{e} (1 - \gamma_5) \nu_e + \text{h.c.} \right)$$

+ terms with RH neutrinos

$$-\mathcal{L}_{n \to p e^- \bar{\nu}_e} = \left(C_V \left(\bar{p} \gamma^{\mu} n + \frac{C_A}{C_V} \bar{p} \gamma^{\mu} \gamma_5 n \right) \times \bar{e} \gamma_{\mu} (1 - \gamma_5) \nu_e \right) \\ + C_S \bar{p} n \times \bar{e} (1 - \gamma_5) \nu_e + \frac{1}{2} C_T \bar{p} \sigma^{\mu \nu} n \times \bar{e} \sigma_{\mu \nu} (1 - \gamma_5) \nu_e \\ - C_P \bar{p} \gamma_5 n \times \bar{e} (1 - \gamma_5) \nu_e + \text{h.c.}$$

Linear approx: $SM + small + (small)^2$ (Alternatively: no RH neutrinos: $C_i = C_i'$)

$$-\mathcal{L}_{n \to pe^- \bar{\nu}_e} = \begin{pmatrix} C_V \left(\bar{p} \gamma^{\mu} n + \frac{C_A}{C_V} \bar{p} \gamma^{\mu} \gamma_5 n \right) \times \bar{e} \gamma_{\mu} (1 - \gamma_5) \nu_e \\ + C_S \bar{p} n \times \bar{e} (1 - \gamma_5) \nu_e + \frac{1}{2} C_T \bar{p} \sigma^{\mu\nu} n \times \bar{e} \sigma_{\mu\nu} (1 - \gamma_5) \nu_e \\ - \frac{C_F \bar{p} \gamma_5 n \times \bar{e} (1 - \gamma_5) \nu_e + \text{h.c.}}{(1 - \gamma_5) \nu_e + \text{h.c.}} & \text{"since the nucleons are treated nonrelativistically, the pseudoscalar couplings are omitted"} \\ \text{Linear approx:} \\ SM + small + (small)^2 \end{pmatrix}$$

(Alternatively: no RH neutrinos: C_i = C_i')

$$\begin{aligned} -\mathcal{L}_{n \to p e^- \bar{\nu}_e} &= C_V \left(\bar{p} \gamma^\mu n \ + \ \frac{C_A}{C_V} \ \bar{p} \gamma^\mu \gamma_5 n \right) \ \times \ \bar{e} \gamma_\mu \left(1 - \gamma_5 \right) \nu_e \\ &+ C_S \ \bar{p} \ n \ \times \ \bar{e} \left(1 - \gamma_5 \right) \nu_e \ + \ \frac{1}{2} \ C_T \ \bar{p} \sigma^{\mu\nu} n \ \times \ \bar{e} \sigma_{\mu\nu} \left(1 - \gamma_5 \right) \nu_e + \text{h.c.} \end{aligned}$$

[+ CPV effects]

e

U

✓ Indirect effect in the Ft-values & neutron lifetime:

$$\delta au_n, \delta \mathcal{F}t \sim -b \langle rac{m_e}{E_e}
angle$$

Probing the Fierz term

✓ Indirect effect in the Ft-values & neutron lifetime:

$$\delta au_n, \delta \mathcal{F}t \sim -b \langle rac{m_e}{E_e}
angle$$

Current data (+ TH!!)

Precision: 0(0.01 - 1)% !!

Nuclei Neutron data Ft $(0^+ \rightarrow 0^+)$ values Correlation coefficients Parent $\mathcal{F}t$ (s) Parent Parameter Value Type Parameter Value ^{10}C 3078.0 ± 4.5 ⁶He GT/β^{-} $-0.3308(30)^{a}$ τ_n (s) \boldsymbol{a} 879.75(76) * (s = 1.9!!)14O 3071.4 ± 3.2 $^{32}\mathrm{Ar}$ F/β^+ 0.9989(65) \tilde{a} -0.1034(37) * ^{22}Mg a_n 3077.9 ± 7.3 38m K F/β^+ \tilde{a} 0.9981(48) 26m Al \tilde{a}_n -0.1090(41) 3072.9 ± 1.0 60 Co Ã GT/β^{-} -1.014(20) ^{34}Cl 3070.7 ± 1.8 \tilde{A}_n -0.11869(99) * (s = 2.6!!)Ã ^{67}Cu $^{34}\mathrm{Ar}$ GT/β^{-} 0.587(14) 3065.6 ± 8.4 \tilde{B}_n 0.9805(30) * 114 In Ã $^{38m}\mathrm{K}$ 3071.6 ± 2.0 GT/β^{-} -0.994(14) λ_{AB} -1.2686(47) ^{38}Ca $^{14}O/^{10}C$ 3076.4 ± 7.2 $F-GT/\beta^+$ P_F/P_{GT} 0.9996(37)-0.00012(20) * D_n ^{42}Sc 3072.4 ± 2.3 $^{26}Al/^{30}P$ $F-GT/\beta^+$ P_F/P_{GT} 1.0030(40)0.004(13) R_n 46V 3074.1 ± 2.0 ⁸Li GT/β^{-} R0.0009(22) ^{50}Mn 3071.2 ± 2.1 * Average ^{54}Co 3069.8 ± 2.6 $S = (X^{2}min/dof)^{1/2}$ 62 Ga 3071.5 ± 6.7 74 Rb 3076.0 ± 11.0 [See talks by Callahan's. Many recent data: Wietfeldt, Dees & Melconian] [Hardy-Towner'2015] Th (UCNT'17, Gravitrap'17), [See talks by An (UCNA'18), an (aCORN'17), ... Hardy & Leach]

Current data (+ TH!!)

Precision: 0(0.01 - 1)% !!

Nuclei Ft $(0^+ \rightarrow 0^+)$ values Correlation coefficients Parent $\mathcal{F}t$ (s) Parent Type Parameter Value ^{10}C 3078.0 ± 4.5 ⁶He GT/β^{-} $-0.3308(30)^{a}$ \boldsymbol{a} 14O 3071.4 ± 3.2 $^{32}\mathrm{Ar}$ F/β^+ 0.9989(65) \tilde{a} ^{22}Mg 3077.9 ± 7.3 38m K F/β^+ \tilde{a} 0.9981(48) 26m Al 3072.9 ± 1.0 60 Co Ã GT/β^{-} -1.014(20) ^{34}Cl 30707 ± 18 ^{67}Cu Ã $^{34}\mathrm{Ar}$ GT/β^{-} 0.587(14) 3065.6 ± 8.4 114 In Ã $^{38m}\mathrm{K}$ 3071.6 ± 2.0 GT/β^{-} -0.994(14) ^{38}Ca $^{14}O/^{10}C$ 3076.4 ± 7.2 $F-GT/\beta^+$ P_F/P_{GT} 0.9996(37) ^{42}Sc 3072.4 ± 2.3 $^{26}Al/^{30}P$ $F-GT/\beta^+$ P_F/P_{GT} 1.0030(40)46V 3074.1 ± 2.0 ⁸Li GT/β^{-} R0.0009(22) ^{50}Mn 3071.2 ± 2.1 ^{54}Co 3069.8 ± 2.6 62 Ga 3071.5 ± 6.7 74 Rb 3076.0 ± 11.0

[Hardy-Towner'2015] [See talks by Hardy & Leach] [See talks by Callahan's, Wietfeldt, Dees & Melconian]

Neutron data

Parameter	Value
τ_n (s)	879.75(76) * (s = 1.9!!)
a_n	-0.1034(37) *
\tilde{a}_n	-0.1090(41)
$ ilde{A}_n$	-0.11869(99) * (s = 2.6!!)
$ ilde{B}_n$	0.9805(30) *
λ_{AB}	-1.2686(47)
D_n	-0.00012(20) *
R_n	0.004(13)
	* Average

$S = (\chi^2 min/dof)^{1/2}$

Many recent data: Tn (UCNT'17, Gravitrap'17), An (UCNA'18), an (aCORN'17), ...

PPNS 2018 (Last week!): An = -0.11983(21) Perkeo III (2.5x!)

Current data \rightarrow Results

0.9875

0.9865

 $|C_V| [G_F/\sqrt{2}]$

0.9855

0.9845

 $|C_V|$ [$G_F/\sqrt{2}$]

SM tests in β decays

6

 C_{S}/C_{V} [10⁻³]

Driven by Ft's, Tn, An!

 C_A/C_V

• One can trivially calculate the precision needed in any other observable to compete:

Ex. #1
$$ilde{a}_n = f(C_i) \ o \ \delta ilde{a}_n = 0.6\%$$

PS: the precision needed in an is much higher!

$\begin{pmatrix} C_V \\ C_A/C_V \\ C_S/C_V \\ C_T/C_A \end{pmatrix} = \begin{pmatrix} 0.98595(34) G_F/\sqrt{2} \\ -1.2728(17) \\ 0.0014(12) \\ 0.0020(22) \end{pmatrix} \text{ with } \rho = \begin{pmatrix} 1.00 \\ 0.08 & 1.00 \\ 0.94 & 0.08 & 1.00 \\ -0.32 & 0.85 & -0.31 & 1.00 \end{pmatrix}$	$= \begin{pmatrix} 0.98595(34) G_F / \sqrt{2} \\ -1.2728(17) \\ 0.0014(12) \\ 0.0020(22) \end{pmatrix} \text{ with } \rho = \begin{pmatrix} 1.00 \\ 0.08 & 1.00 \\ 0.94 & 0.08 & 1.00 \\ -0.32 & 0.85 & -0.31 & 1.00 \end{pmatrix}$	
--	---	--

• One can trivially calculate the precision needed in any other observable to compete:

Ex. #1
$$ilde{a}_n = f(C_i) \rightarrow \delta ilde{a}_n = 0.6\%$$

PS: the precision needed in an is much higher!

$ \begin{pmatrix} C_S/C_V \\ C_T/C_A \end{pmatrix} \begin{pmatrix} 0.0014(12) \\ 0.0020(22) \end{pmatrix} \end{pmatrix} \overset{\text{wreak}}{=} \begin{pmatrix} 0.94 & 0.08 & 1.00 \\ -0.32 & 0.85 & -0.31 & 1.00 \end{pmatrix} $		$\left(\begin{array}{c} C_V \\ C_A/C_V \\ C_S/C_V \\ C_T/C_A \end{array}\right)$	=	$\left(\begin{array}{c} 0.98595(34)G_F/\sqrt{2}\\ -1.2728(17)\\ 0.0014(12)\\ 0.0020(22) \end{array}\right)$	with	ho =	$\begin{pmatrix} 1.00 \\ 0.08 \\ 0.94 \\ -0.32 \end{pmatrix}$	$1.00 \\ 0.08 \\ 0.85$	$1.00 \\ -0.31$	1.00	
---	--	--	---	---	------	------	---	------------------------	-----------------	------	--

• One can trivially calculate the precision needed in any other observable to compete:

Ex. #1
$$ilde{a}_n = f(C_i) \rightarrow \delta ilde{a}_n = 0.6\%$$

PS: the precision needed in an is much higher!

Ex. #2: Spectrum shape measurements

Current data \rightarrow Results

Current data \rightarrow Results

Quarks (low-E): $d \rightarrow u e^{-} \overline{\nu}$

$$C_V \sim g_V V_{ud} (1 + \text{NP}) (1 + \text{RC})$$

$$C_A / C_V \sim -g_A / g_V (1 - \epsilon_R)$$

$$C_S \sim g_S \epsilon_S$$

$$C_T \sim g_T \epsilon_T$$

From hadrons to quarks

From hadrons to quarks

SM tests in β decays

From hadrons to quarks

[Bhattacharya, Cirigliano, Cohen, Filipuzzi, MGA, Graesser, Gupta, Lin, PRD85 (2012)]

<u>PS:</u> Pheno dets. are also posible, but less precise $g_T = \int (h_1^u(x) - h_1^d(x)) dx$

Using these RC + charges, the Ci bounds translate into...

 $\begin{array}{c}
\textbf{BSM fit} \\
\begin{pmatrix} |\tilde{V}_{ud}| \\ \epsilon_R \\ \epsilon_S \\ \epsilon_T \end{pmatrix} = \begin{pmatrix} 0.97452(34)(19) \\ 0.002(1)(21)_{\text{gA}} & (90\% \text{ CL}) \\ 0.0014(20)(3)_{\text{gS}} & (90\% \text{ CL}) \\ -0.0007(12)(1)_{\text{gT}} & (90\% \text{ CL}) \end{pmatrix} \quad \text{with} \quad \rho = \begin{pmatrix} 1.00 \\ 0.00 & 1.00 \\ 0.83 & 0.00 & 1.00 \\ 0.28 & -0.04 & 0.31 & 1.00 \end{pmatrix}$

Using these RC + charges, the Ci bounds translate into...

Using these RC + charges, the Ci bounds translate into...

BSM fit $\begin{pmatrix} |\tilde{V}_{ud}| \\ \epsilon_R \\ \epsilon_S \\ \epsilon_T \end{pmatrix} = \begin{pmatrix} 0.97452(34)(19) \\ 0.002(1)(21)_{\text{gA}} & (90\% \text{ CL}) \\ 0.0014(20)(3)_{\text{gS}} & (90\% \text{ CL}) \\ -0.0007(12)(1)_{\text{gT}} & (90\% \text{ CL}) \end{pmatrix} \text{ with } \rho = \begin{pmatrix} 1.00 \\ 0.00 & 1.00 \\ 0.83 & 0.00 & 1.00 \\ 0.28 & -0.04 & 0.31 & 1.00 \end{pmatrix}$ > $|\tilde{V}_{ud}|^2 + |\tilde{V}_{us}|^2 + |\tilde{V}_{ub}|^2 = 0.9999(14)$ $\stackrel{\text{S,T=0}}{\longrightarrow} 0.9995(8)$ SM fit $|V_{ud}| = 0.97416(11)(19) = 0.97416(21)$, $\lambda = 1.27510(66)$, $(\rho = -0.13)$

Using these RC + charges, the Ci bounds translate into...

BSM fit $\begin{pmatrix} |\tilde{V}_{ud}| \\ \epsilon_R \\ \epsilon_S \\ \epsilon_T \end{pmatrix} = \begin{pmatrix} 0.97452(34)(19) \\ 0.002(1)(21)_{\text{gA}} & (90\% \text{ CL}) \\ 0.0014(20)(3)_{\text{gS}} & (90\% \text{ CL}) \\ -0.0007(12)(1)_{\text{gT}} & (90\% \text{ CL}) \end{pmatrix} \text{ with } \rho = \begin{pmatrix} 1.00 \\ 0.00 & 1.00 \\ 0.83 & 0.00 & 1.00 \\ 0.28 & -0.04 & 0.31 & 1.00 \end{pmatrix}$ > $|\tilde{V}_{ud}|^2 + |\tilde{V}_{us}|^2 + |\tilde{V}_{ub}|^2 = 0.9999(14)$ 5, T=0 0.9995(8) SM fit $|V_{ud}| = 0.97416(11)(19) = 0.97416(21)$, $\lambda = 1.27510(66)$, $(\rho = -0.13)$

M. González-Alonso (CERN)

Benchmark numbers (from ongoing / planned experiments):

$$\delta au_n = 0.1 s$$

 $\tilde{A}_n, \ a_n, \ \tilde{a}_F, \ a_{GT}$ at 0.1%
 $b_{GT} = 0.001$

Benchmark numbers (from ongoing / planned experiments):

$$\delta \tau_n = 0.1 s$$

 $\tilde{A}_n, a_n, \tilde{a}_F, a_{GT}$ at 0.1%
 $b_{GT} = 0.001$

Pocanic's talk: $\pi \rightarrow ev\gamma$ will also improve (PEN)... ~ x2? "take it with a rock of salt"

Quarks, W, Z, ...

M. González-Alonso (CERN)

SM tests in β decays

 $\frac{d\,\vec{\epsilon}(\mu)}{d\log\mu} = \left(\frac{\alpha(\mu)}{2\pi}\gamma_{\rm ew} + \frac{\alpha_s(\mu)}{2\pi}\gamma_s\right)\,\vec{\epsilon}(\mu),$

Matching with SMEFT

 $r_{\wedge}(1)_{1}$

 $\alpha (3)_1$

[Cirigliano, MGA, Jenkins'2010; MGA, Camalich, Mimouni'2017]

 δG_F

$$\frac{d\,\vec{\epsilon}(\mu)}{d\log\mu} = \left(\frac{\alpha(\mu)}{2\pi}\gamma_{\rm ew} + \frac{\alpha_s(\mu)}{2\pi}\gamma_s\right)\,\vec{\epsilon}(\mu),$$

$$\frac{\delta G_F}{G_F} = 2 \left[\hat{\alpha}_{\varphi l}^{(3)} \right]_{11+22} - \left[\hat{\alpha}_{ll}^{(1)} \right]_{1221} - 2 \left[\hat{\alpha}_{ll}^{(3)} \right]_{1122 - \frac{1}{2}(1221)},$$

$$V_{1j} \cdot \epsilon_{l}^{l} = 2 V_{1j} \left[\hat{\alpha}_{\varphi l}^{(3)} \right]_{\ell \ell} + 2 \left[V \hat{\alpha}_{\varphi q}^{(3)} \right]_{1j} - 2 \left[V \hat{\alpha}_{lq}^{(3)} \right]_{\ell \ell 1j},$$

$$V_{1j} \cdot \epsilon_{R}^{j} = - \left[\hat{\alpha}_{\varphi \varphi} \right]_{1j},$$

$$V_{1j} \cdot \epsilon_{s_R}^{j\ell} = - \left[\hat{\alpha}_{lq} \right]_{\ell \ell j},$$

$$V_{1j} \cdot \epsilon_{s_R}^{j\ell} = - \left[\hat{\alpha}_{lq} \right]_{\ell \ell j},$$

$$V_{1j} \cdot \epsilon_{s_R}^{j\ell} = - \left[\hat{\alpha}_{lq} \right]_{\ell \ell j},$$

$$\hat{\alpha} = \alpha \frac{v^2}{\Lambda^2}$$

$$O_{\varphi \varphi} = i(\varphi^T \epsilon D_{\mu} \varphi)(\overline{u} \gamma^{\mu} d) + \text{h.c.}$$

$$O_{\varphi \varphi}^{(3)} = i(\varphi^T b D^{\mu} \sigma^a \varphi)(\overline{l} \gamma_{\mu} \sigma^a q) + \text{h.c.}$$

$$O_{q q e}^{(3)} = (\overline{l} c) \epsilon^{ab} (\overline{l} g) + \text{h.c.}$$

$$O_{q q e}^{j} = (\overline{l} c) \overline{d} g) + \text{h.c.}$$

M. González-Alonso (CERN)

V-A interactions: CKM unitarity test vs LEP

Many examples: • Tree: W', RPV-MSSM, ...

• Loop: Z', RPC-MSSM, ...

[Barbieri et al. (1985), Marciano & Sirlin (1987), Hagiwara et al. (1995), Kurylov & Ramsey-Musolf (2002), Marciano (2007), Gauld et al. (2014), ...]

V-A interactions: CKM unitarity test vs LEP

Many examples: • Tree: W', RPV-MSSM, ...

• Loop: Z', RPC-MSSM, ...

[Barbieri et al. (1985), Marciano & Sirlin (1987), Hagiwara et al. (1995), Kurylov & Ramsey-Musolf (2002), Marciano (2007), Gauld et al. (2014), ...]

V-A interactions: CKM unitarity test vs LEP

U(3)⁵ symmetry

CKM unitarity vs HEP

[Hardy & Towner'15, Flavianet'16, <u>MGA & Martin Camalich'16,</u> MGA, Naviliat Cuncic, Severijns'18]

Scalar & tensor interactions: b_{Fierz} vs LHC

Very hard to avoid π→lv
Tree: chiral theories... (1±Y5)
Loop: QED & EW mixing (S,T→P)

$$|\mathcal{A}(\pi \to \ell \nu)|^2 \sim m_\ell^2 \left(1 + \frac{M_{QCD}}{m_\ell} \epsilon_P\right)^2$$

Scalar & tensor interactions: b_{Fierz} vs LHC

LHC limits on $\varepsilon_{S,T}$

$$N_{pp \to evX}\left(m_T^2 > m_{T,cut}^2\right) = \varepsilon \times \mathbf{L} \times \sigma_{pp \to evX}\left(m_T^2 > m_{T,cut}^2\right) = \varepsilon \times \mathbf{L} \times \left(\sigma_W + \sigma_S \varepsilon_S^2 + \sigma_T \varepsilon_T^2\right)$$

(Interference w/ SM \sim m/E)

LHC limits on $\varepsilon_{S,T}$

$$N_{pp \to evX}\left(m_T^2 > m_{T,cut}^2\right) = \varepsilon \times \mathbf{L} \times \sigma_{pp \to evX}\left(m_T^2 > m_{T,cut}^2\right) = \varepsilon \times \mathbf{L} \times \left(\sigma_W + \sigma_S \varepsilon_S^2 + \sigma_T \varepsilon_T^2\right)$$

(Interference w/ SM ~ m/E)

LHC limits on $\varepsilon_{S,T}$

$$N_{pp \to evX}\left(m_T^2 > m_{T,cut}^2\right) = \varepsilon \times \mathbf{L} \times \sigma_{pp \to evX}\left(m_T^2 > m_{T,cut}^2\right) = \varepsilon \times \mathbf{L} \times \left(\sigma_W + \sigma_S \varepsilon_S^2 + \sigma_T \varepsilon_T^2\right)$$

(Interference w/ SM ~ m/E)

If we see a bump...

EFT breaks down...
 Toy model: scalar resonance:

$$\mathcal{L} = \lambda_S V_{ud} \phi^+ \overline{u} d + \lambda_l \phi^- \overline{e} P_L \nu_e$$

• Then we have a lower-limit value for ε_s :

$$\sigma \cdot \mathrm{BR} \leq \frac{|V_{ud}|}{12v^2} \frac{\pi}{\sqrt{2N_c}} |\epsilon_S| \tau L(\tau)$$

$$L(\tau) = \int_{\tau}^{1} dx f_q(x) f'_q(\tau/x) / x$$

$$\tau = m^2 / s$$

$$\epsilon_S = 2\lambda_S \lambda_l \frac{v^2}{m^2}$$

Nice interplay of two experiments separated for so many orders of magnitudes!!!!

[T. Battacharya et al., 2012]

M. González-Alonso (CERN)

Conclusions

- (Sub) permil-level precision in β decays
 - Great QCD progress (charges);
 - Experimental progress too;
 - Inner RC? (Wγ box);
- General EFT analysis available \rightarrow Comparison with APV, LEP, LHC, ...
 - $\rightarrow \beta$ decays are competitive TeV probes;

$$\begin{pmatrix} |C_V| \\ C_A/C_V \\ C_S/C_V \\ C_T/C_A \end{pmatrix} = \begin{pmatrix} 0.98595(34) G_F/\sqrt{2} \\ -1.2728(17) \\ 0.0014(12) \\ 0.0020(22) \end{pmatrix}$$

 $g_{s} = \frac{\left(M_{n} - M_{p}\right)_{QCD}}{m_{d} - m_{u}} = 1.02(11)$

Backup slides

Beta asymmetry

[From B. Plaster's talk at PPNS 2018]

M. González-Alonso (CERN)

CKM unitarity

[Moulson'17, Nf=2+1+1]

M. González-Alonso (CERN)

g_S & the nucleon splitting

[MGA & Martin Camalich, Phys. Rev. Lett. 112 (2014)]

$$\partial_{\mu} \left(\bar{u} \gamma^{\mu} d \right) = -i(m_d - m_u) \bar{u} d$$

$$g_{s} = \frac{\left(M_{n} - M_{p}\right)_{OCD}}{m_{d} - m_{u}}g_{V}$$

Useful connection between two different Lattice efforts!

Well known, used in many other processes, e.g. EDMs or $K \rightarrow \pi ev...$

$$f_0(t) = f_+(t) + \frac{t}{m_K^2 - m_\pi^2} f_-(t)$$

[e.g. Anselm et al'1985, Ellis et al'2008, Engel et al'2013, ...]

Isospin splitting in the nucleon

$$(M_n - M_p)_{exp} = 1.2933322(4) \text{ MeV}$$

 $M_n - M_p = (M_n - M_p)_{QCD} + (M_n - M_p)_{QED}$

It turns out lattice-QCD is being calculating this recently!!!!

