

Dispersive analysis of

hadronic light-by-light

contribution to $(g-2)_{\mu}$

Marc Vanderhaeghen (in collaboration with Igor Danilkin) CIPANP 2018, May 29- June 3, 2018 Palm Springs, CA (USA)

$(g-2)_{\mu}$: theory vs experiment

$$a_{\mu}^{exp} - a_{\mu}^{SM} =$$

(28.1 ± 3.6 th ± 6.3 exp) x 10⁻¹⁰

3 - 4 σ deviation from SM value !

Errors or new physics ?

New FNAL, J-PARC experiments

 $\delta a_{\mu}^{FNAL} = 1.6 \times 10^{-10}$ talk R. Hong

factor 4 improvement in exp. error

-> Improve theory !

Hadronic contributions to $(g-2)_{\mu}$

hadronic vacuum polarization (HVP)

New FNAL and J-Parc (g-2)_µ expt. : $\delta a_{\mu}^{exp} = 1.6 \times 10^{-10}$

HVP determined by cross section measurements of e⁺e⁻ -> hadrons

measurements of meson transition form factors required as input to reduce uncertainty

hadronic light-by-light scattering (HLbL)

what is known about hadronic LbL scattering ?

hadronic LbL corrections to $(g-2)_{\mu}$: relevant contributions

hadronic LbL corrections to $(g-2)_{\mu}$

experimental input: meson transition FFs, $\gamma^* \gamma^* \rightarrow$ multi-meson states, meson Dalitz decays

Theory: sum rules for LbL scattering (I)

sum rules for LbL scattering (III)

sum rules for LbL scattering: 3 superconvergence relations

how to estimate the HLbL contribution to a_{μ} ?

single meson contributions to a_{μ}

Pauk, Vdh (2013)

HLbL to a_{\mu} : present status

μ	A A A	\	roni and	<u>+</u> <u>1</u>	TIM KANINA	+	
Total HLbL							
$[a_{\mu} \text{ in units } 10^{-10}]$	Authors	π^0, η, η'	<i>π</i> π, KK	scalars	axial vectors	quark loops	Total
	BPaP(96)	8.5(1.3)	-1.9(1.3)	-0.68(0.20)	0.25(0.10)	2.1(03)	8.3(3.2)
	HKS(96)	8.3(0.6)	-0.5(0.8)	_	0.17(0.17)	1.0(1.1)	9.0(1.5)
	KnN(02)	8.3(1.2)	_	_	_	_	8.0(4.0)
	MV(04)	11.4(1.0)	—	—	2.2(0.5)	-	13.6(2.5)
	PdRV(09)	11.4(1.3)	-1.9(1.9)	-0.7(0.7)	1.5(1.0)	0.23	10.5(2.6)
	N/JN(09)	9.9(1.6)	-1.9(1.3)	-0.7(0.2)	2.2(0.5)	2.1(0.3)	11.6(3.9)
	J(15)	9.9(1.6)	-1.9(1.3)	-0.7(0.2)	0.75(0.27)	2.1(0.3)	10.2(3.9)

B=Bjnens, Pa=Pallante, P=Prades, H=Hayakawa, K=Kinoshita, S=Sanda, Kn=Knecht, N=Nyffeler, M=Melnikov, V=Vainshtein, dR=de Rafael, J=Jegerlehner

Tensor meson contribution: $\sim 0.1 \times 10^{-10}$ (small relative to 1.6 x 10⁻¹⁰)

Pauk, Vdh (2013) Danilkin, Vdh (2016)

Improvements: include multi-meson channels in a data-driven / dispersive approach

Improvements: multi-meson production

Observables in experiment $e^+e^- \rightarrow e^+e^-\pi\pi$

$$d\sigma = \frac{\alpha^2}{16\pi^4 Q_1^2 Q_2^2} \frac{2\sqrt{X}}{s(1-4m^2/s)^{1/2}} \cdot \frac{d^3 \vec{p}_1'}{E_1'} \cdot \frac{d^3 \vec{p}_2'}{E_2'} \times \left\{ 4 \rho_1^{++} \rho_2^{++} \sigma_{TT} + \rho_1^{00} \rho_2^{00} \sigma_{LL} + 2 \rho_1^{++} \rho_2^{00} \sigma_{TL} + \dots \right\},$$

γγ→ππ, KK, ηη, πη (Belle: 07,08, 09, 10, ..) γγ*→ππ, πη (BESIII in progress)

Cross section

$$\langle \pi(p_1)\pi(p_2)|T|\gamma(q_1,\lambda_1)\gamma(q_2,\lambda_2)\rangle = (2\pi)^4 \,\delta^{(4)}(p_1+p_2-q_1-q_2) \,H_{\lambda_1\lambda_2}$$
$$H_{\lambda_1\lambda_2} = H^{\mu\nu}\epsilon_{\mu}(\lambda_1) \,\epsilon_{\nu}(\lambda_2), \quad \lambda_1 = \pm 1, \,\lambda_2 = \pm 1, 0$$
$$P \text{ symmetry:} \quad \mathbf{6} \quad \mathbf{9} \quad \mathbf{3} \text{ independent amplitudes} \qquad H_{++}, H_{+-}, H_{+0}$$

Cross sections

$$\sigma_{TT} = \pi \alpha^2 \frac{\rho(s)}{4(s+Q^2)} \int d\cos\theta \left(|H_{++}|^2 + |H_{+-}|^2 \right)$$
$$\sigma_{TL} = \pi \alpha^2 \frac{\rho(s)}{2(s+Q^2)} \int d\cos\theta \, |H_{+0}|^2$$

Unitarity

These "diagonalise unitarity" and contain resonance information

definite: *J*, λ_1 , λ_2

$$\operatorname{Im} h_{\gamma\gamma^* \to \pi\pi}(s) = \rho_{\pi\pi} h_{\gamma\gamma^* \to \pi\pi} t^*_{\pi\pi \to \pi\pi} + \rho_{KK} h_{\gamma\gamma^* \to KK} t^*_{KK \to \pi\pi} + \dots$$

Dispersion relation

Morgan et al. (1998) Garcia-Martin et al. (2010) Moussallam (2013)

definite: *J*, λ_1 , λ_2

Write a dispersive representation for $\Omega^{-1}(s)(h(s) - h^{Born}(s))$

$$\begin{pmatrix} h_{++}(s) \\ k_{++}(s) \end{pmatrix} = \begin{pmatrix} h_{++}^{Born}(s) \\ k_{++}^{Born}(s) \end{pmatrix} + \Omega(s) \left[\begin{pmatrix} a \\ c \end{pmatrix} + \begin{pmatrix} b \\ d \end{pmatrix} s + \frac{s^2}{\pi} \int_{-\infty}^{s_L} \frac{ds'}{s'^2} \frac{\Omega(s')^{-1}}{s'-s} \begin{pmatrix} \operatorname{Im} \bar{h}_{++}(s') \\ \operatorname{Im} \bar{k}_{++}(s') \end{pmatrix} - \frac{s^2}{\pi} \int_{s_{th}}^{\infty} \frac{ds'}{s'^2} \frac{\operatorname{Im} \Omega(s')^{-1}}{s'-s} \begin{pmatrix} h_{++}^{Born}(s') \\ k_{++}^{Born}(s') \end{pmatrix} \right]$$

Coupled-channel Omnes function

$$\Omega(s) = \begin{pmatrix} \Omega_{\pi\pi\to\pi\pi} & \Omega_{\pi\pi\to K\bar{K}} \\ \Omega_{K\bar{K}\to\pi\pi} & \Omega_{K\bar{K}\to K\bar{K}} \end{pmatrix}$$

Unitarity $s \ge s_{th}$

 $\operatorname{Im} h(s) = h(s) \rho(s) t^*(s)$ $\operatorname{Im} \Omega(s) = \Omega(s) \rho(s) t^*(s)$

What has been done so far?

$Q^2 = 0$	Approach	Inelasticity N p	Number of fitted arameters to $\sigma_{\gamma\gamma \rightarrow MM}$	Range of applicability
[Hoferichter et. al. 2011]	Roy-Steiner	ππ	0	$\sqrt{s} < 0.98 \mathrm{GeV}$
[Morgan et. al. 1998]	Disp, Omnes	ππ	0	$\sqrt{s} \lesssim 0.6 \mathrm{GeV}$
[Dai et. al. 2014]	Amplitude anal.	$\pi\pi$, KK	>20	\sqrt{s} < 1.5 GeV
[Garcia-Martin et.al. 2010]	Disp, Omnes	<i>π</i> π, KK	6	\sqrt{s} < 1.3 GeV
[Current work]	Disp, Omnes	ππ, KK πη, KK	0	\sqrt{s} < 1.4 GeV
$Q^2 \neq 0$				
[Moussallam 2013]	Disp, Omnes	ππ, J=0	0	$\sqrt{s} \lesssim 0.8 \text{ GeV}$
[Colangelo et.al. 2017]	Roy-Steiner	ππ, J=0	0	$\sqrt{s} \lesssim 0.8 \text{ GeV}$
[Current work]	Disp, Omnes	$\pi\pi, \mathrm{KK}, \mathrm{K}$ $\pi\eta, \mathrm{KK}$	J=0,2 0	$\sqrt{s} < 1.4 \mathrm{GeV}$
			OI	nly dispersive analyses are shown

Omnes function I=0, $\{\pi\pi, KK\}$

Bounded p.w. amplitudes and Omnes at large energies

$$T(s) = \Omega(s) N(s)$$

$$N(s) = U(s) + \frac{s}{\pi} \int_{R} \frac{ds'}{s'} \frac{\rho(s')N(s')(U(s) - U(s'))}{s' - s}$$
$$\Omega^{-1}(s) = 1 - \frac{s}{\pi} \int_{R} \frac{ds'}{s'} \frac{\rho(s')N(s')}{s' - s}$$
$$U(s) = \sum_{k} C_{k} \,\xi(s)^{k}$$

C_k **fitted** to exp. **data** and Roy Eq. solutions

Omnes function I=1, { $\pi\eta$, KK}

Danilkin, Gil, Lutz (2011, 2013)

Left-hand cuts

Morgan et al. (1998)

Moussallam (2013)

$$\begin{split} h_{++}(s) \\ k_{++}(s) \end{pmatrix} &= \begin{pmatrix} h_{++}^{Born}(s) \\ h_{++}^{Born}(s) \\ k_{++}^{Born}(s) \end{pmatrix} + \Omega(s) \begin{bmatrix} \begin{pmatrix} a \\ c \end{pmatrix} + \begin{pmatrix} b \\ d \end{pmatrix} s + \frac{s^2}{\pi} \int_{-\infty}^{s_L} \frac{ds'}{s'^2} \frac{\Omega(s')^{-1}}{s'-s} \begin{pmatrix} \operatorname{Im} \bar{h}_{++}(s') \\ \operatorname{Im} \bar{k}_{++}(s') \end{pmatrix} \\ &- \frac{s^2}{\pi} \int_{s_{th}}^{\infty} \frac{ds'}{s'^2} \frac{\operatorname{Im} \Omega(s')^{-1}}{s'-s} \begin{pmatrix} h_{++}^{Born}(s') \\ h_{++}^{Born}(s') \end{pmatrix} \end{bmatrix}$$
Scalar QED (pion pole contribution)
$$\bigvee_{\mathbf{y}^*} \bigvee_{\mathbf{y}^*} \bigvee_{\mathbf$$

0.0 0.1 0.2 0.3 0.4 0.5 0.6

Subtraction constants

Dispersive integral for J=0

$$\begin{pmatrix} h_{++}(s) \\ k_{++}(s) \end{pmatrix} = \begin{pmatrix} h_{++}^{Born}(s) \\ k_{++}^{Born}(s) \end{pmatrix} + \Omega(s) \begin{bmatrix} a \\ c \end{pmatrix} + \begin{pmatrix} b \\ d \end{pmatrix} s + \frac{s^2}{\pi} \int_{-\infty}^{s_L} \frac{ds'}{s'^2} \frac{\Omega(s')^{-1}}{s'-s} \begin{pmatrix} \operatorname{Im} \bar{h}_{++}(s') \\ \operatorname{Im} \bar{k}_{++}(s') \end{pmatrix} - \frac{s^2}{\pi} \int_{s_{th}}^{\infty} \frac{ds'}{s'^2} \frac{\operatorname{Im} \Omega(s')^{-1}}{s'-s} \begin{pmatrix} h_{++}^{Born}(s') \\ k_{++}^{Born}(s') \end{pmatrix} \end{bmatrix}$$

Soft photon limit $(q_1=0)$

$$H_{\lambda_1 \lambda_2} \to H^{Born}_{\lambda_1 \lambda_2}$$

$$s = -Q^2, \ t = u = m_\pi^2$$

For space like photons: generalized polarizabilities

$$\pm \frac{2\alpha}{m_{\pi}} \frac{H_{\pm\pm}^{n}}{s+Q^{2}} = (\alpha_{1} \mp \beta_{1})_{\pi^{0}} + \dots$$
$$\pm \frac{2\alpha}{m_{\pi}} \frac{(H_{\pm\pm}^{c} - H_{\pm\pm}^{Born})}{s+Q^{2}} = (\alpha_{1} \mp \beta_{1})_{\pi^{+}} + \dots$$

COMPASS data on $(\alpha_1 - \beta_1)_{\pi^+}$ (future Hall D (JLab) experiment)

multi-meson production in $\gamma \gamma$ collisions

Coupled-channel dispersive treatment of $f_0(980)$ and $a_0(980)$ is **crucial** $f_2(1270)$ described dispersively through Omnes function $a_2(1320)$ described as a Breit Wigner resonance $\pi^0\eta$: Danilkin, Deineka, Vdh (2017) $\pi\pi$: Danilkin, Vdh (in progress)

multi-meson production in $\gamma^*\gamma$ collisions

multi-meson contributions a_{μ}

Summary and outlook

new a_{μ} Fermilab and J-Parc experiments ongoing: aim: factor 4 improvement in experimental value

complementary experimental program (BESIII, Belle II) ongoing as input for the hadronic contributions to the HVP and HLbL contributions to a_μ talk Ch. Redmer

new dispersion relation frameworks for HLbL to a_{μ} : -> require close collaboration with experiment / validation (spacelike, timelike, meson decays)

aim: data driven approach also in HLbL

Theory goal: realistic error estimate on a_{μ} reduce to 2 x 10⁻¹⁰ (20 % of HLbL) to match accuracy of forthcoming experiments -> Muon (g-2) Theory Initiative

Aim of concerted effort is to allow for a conclusive statement on the present 4σ deviation in a_{μ} between experiment and SM prediction !

Helmholtz-Institut Mainz