Measurement of polarization observables for Lambda hyperon in the $\gamma p \to K^+ \Lambda$

Shankar Adhikari Florida International University

> CIPANP 2018 Palm Spring, CA

CIPANP 2018

Outline

- Motivation
- Experiment
- Data analysis
- Preliminary results for C_x, C_z and P.
- Conclusion and outlook.

Introduction

Study of the baryon resonances are important to understand the fundamental degrees of freedom inside hadrons.

Missing Baryon Problem: *

DDC rating for N*

- a lot of predicted resonances from models (Quark, Lattice etc.) are not observed yet.

Over the manufal way and a mina and a late

	FDG Ia	ung	overall				Qua	ar K	mo	dei	vs.	ex	per	ime	ente	ar u	ala		
	N	1/2+	****		3000		. ——	· — —											
	N(1440)	1/2+	****																
	N(1520)	3/2-	****																
	N(1535)	1/2-	****									2700							
	N(1650)	1/2-	****								\vdash	<u> </u>						2600	<u> </u>
**** Existence is certain	N(1675)	5/2-	****		2500 -											=			
	N(1680)	5/2+	****							2220			2090	2010	2200		2250		
*** Existence is very likely	N(1700)	3/2-	***																
** Evidence of	N(1710)	1/2+	****																
	N(1720)	3/2+	****		5	2106													
existence is only fair.	N(1860)	5/2+	**		Ş 2000 -	1786 S		-	- 1990										
	N(1875)	3/2-	***		s D		- 😇						8-	8					
* Evidence of	N(1880)	1/2+			Mas		(1720)							1700					
existence is poor.	N(1895)	1/2-			~			108			N*		- 100	•••					
	<u>N(1900)</u>	3/2+		1	1500									1520					
	N(1990)	7/2+	**		1500 -														
	N(2000)	5/2+																	
	N(2040)	3/2+	**																
	N(2000)	3/2-	*																
	N(2100)	2/2	**		1000														
	N(2120)	7/2-	****			909													
	N(2220)	9/2+	****		Jπ	1/2+	3/2+	5/2+	7/2+	9/2+	11/2+	13/2+	1/2-	3/2-	5/2-	7/2-	9/2-	11/2-	13/2-
	N(2250)	9/2-	****		L _{2T 2J}	P ₁₁	P ₁₃	F ₁₅	F ₁₇	H ₁₉	H ₁₁₁	K ₁₁₃	S ₁₁	D ₁₃	D ₁₅	G ₁₇	G ₁₉	I ₁₁₁	I ₁₁₃
	N(2200)	1/2+	**				oring		Mote	ch U	D Do	tny E	ur Dh		10.20		5 2001		
	N(2570)	5/2	**			U. LO	ering,	D.C.	wiets	сп, п.	R. Pe	uy, E	ur.r'll	ys.J.P	10.3	70-44(,2001	•	
	14(2570)	3/2-																	
	N(2600)	11/2-	***																
5/29/18	N(2700)	13/2+	**		CIPA	NP 2	018												

Motivation

- Pion beams was the primary tool to study resonances.
- Not all resonances couple strongly to the Nπ channel.
- Interference of states: Resonances are broad and overlapping, possible interference between N and ∆ states.

- K⁺Λ channel is important that;
 - only contribute to N^* with I = 1/2.
 - Λ -> $p\pi^{-}$, self-analyzing nature of Λ hyperon allow us to measure polarization observables from its decay products.
- Polarization observables are sensitive to interference from different states.

Polarization Observables

 Meson photoproduction describes by 4 complex amplitudes that includes 16 spin observable.

$$d\sigma = \frac{1}{2} \left(d\sigma_0 + \hat{\Sigma} [-P_L^{\gamma} \cos(2\phi_{\gamma})] + \hat{T} [P_y^T] + \hat{P} [P_{y'}^R] \right. \\ \left. + \hat{E} [-P_e^{\gamma} P_z^T] + \hat{G} [P_L^{\gamma} P_z^T \sin(2\phi_{\gamma})] + \hat{F} [P_e^{\gamma} P_x^T] + \hat{H} [P_L^{\gamma} P_x^T \sin(2\phi_{\gamma})] \right. \\ \left. + \hat{C}_{x'} [P_e^{\gamma} P_{x'}^R] + \hat{C}_{z'} [P_e^{\gamma} P_{z'}^R] + \hat{O}_{x'} [P_L^{\gamma} P_{x'}^R \sin(2\phi_{\gamma})] + \hat{O}_{z'} [P_L^{\gamma} P_{z'}^R \sin(2\phi_{\gamma})] \right. \\ \left. + \hat{L}_{x'} [P_z^T P_{x'}^R] + \hat{L}_{z'} [P_z^T P_{z'}^R] + \hat{T}_{x'} [P_x^T P_{x'}^R] + \hat{T}_{z'} [P_x^T P_{z'}^R] \right).$$

For the case of circularly polarized photon beam and polarized hyperon:

Polarized	Beam	Target	Hyperon
	unpol. linear circular	x y'z	x' y' z'
Unpolar.	σ		
Beam: linear circular	Σ	H G F E	$egin{array}{ccc} O_{x'} & O_{z'} \ C_{x'} & C_{z'} \end{array}$
Target: x z		Т	$\begin{array}{ccc} T_{x'} & T_{z'} \\ L_{x'} & L_{z'} \end{array}$
Hyperon:			Р

 $\rho_{\Lambda} \frac{d\sigma}{d\Omega_{K^+}} = \frac{d\sigma}{d\Omega_{K^+}} \Big|_{unpol} \{1 + \sigma_y P + P_{beam}(C_x \sigma_x + C_z \sigma_z)\}$ recoil hyperon polarization

 P_{beam} : Photon beam polarization

C_x, C_z and P observables

Measure polarization transfer from Υ to Λ in the production plane along "x" and "z" , and induced polarization perpendicular to production plane.

5/29/18

Previous Measurement $\gamma p \rightarrow K^+ \Lambda$

Experiment was in ELSA, JLAB, MAMI

Rev. C 73, 035202 (2006)

Can be used to constrain non-resonant (t-channel) contribution.

Already verified existence of N(1900).

More data for Polarization observables are included.

Suitable to study higher mass states.

5/29/18

Jefferson Lab

Linear accelerator for Jlab. -> Continuous electron beam. -> 5.71 GeV -> Delivered simultaneously to all halls.

Hall B

CEBAF Large Acceptance Spectrometer (CLAS)

60-65 nA electron beam (5.71 GeV)

Geometry of tagging system

G12 experiment

- Photoproduction experiment; beam energy up to 5.45 GeV.
- Circularly polarized photon beam.
- 40 cm long unpolarized hydrogen target.

Data Analysis: Event selection

 $\gamma p \to K^+ \Lambda$ $\Lambda \to p\pi^- \text{and } n\pi^\circ \text{with } 64\% \text{ and } 36\%.$

Analysis done with two topologies;

3track $\gamma p \to K^+ p \pi^-$ 2track $\gamma p \to K^+ p (\pi^-)$

Selection;

- a. MM(K⁺) < 1.4 GeV
- b. MM²(K⁺p) < 300 MeV and MM²(K⁺p) > -300 MeV
- c. Photon selection timing cut
- d. Vertex cut
- e. Fiducial cut
- f. Time-of-flight knockout
- g. Kinematic fitting

prob > 1% for 3track and prob > 5% for 2track

Physics Events

Low efficiency for negative charge particle in CLAS

 C_x , C_z and P observables are measured on these events.

Observables extraction Methods

• 1d fit method

$$A(\cos\theta_{x/z}^p) = \frac{N^+ - N^-}{N^+ + N^-} = \alpha P_{\circ} C_{x/z} \cos\theta_{x/z}^p$$

 α = Weak decay asymmetry 0.642

• 2d fit method $A(\cos\theta_x^p, \cos\theta_z^p) = \frac{N^+ - N^-}{N^+ + N^-} = \alpha P_{\circ}C_x \cos\theta_x^p + \alpha P_{\circ}C_z \cos\theta_z^p$

- Event by event basis.
- Reduce the bias comes from acceptance because of event wise analysis. $\begin{aligned} f(\cos\theta_x^p,\cos\theta_z^p) &= (1+\alpha P_\circ(C_x\cos\theta_x^p+C_z\cos\theta_z^p)) \\ L(C_x,C_z) &= \prod_{i=1}^n f(\cos\theta_x^p,\cos\theta_z^p) \end{aligned}$
- Minimize negative log likelihood to fit the data;

$$l = -\sum_{i=1}^{n} \log f(\cos \theta_x^p, \cos \theta_z^p)$$

CIPANP 2018

Binning

Two dimensional binning;

- -> Center mass energy (W) and
- -> Angular distribution of kaon in cm frame.

Comparision of 3 methods

- Shows excellent agreements. Later showing results only for maximum likelihood method.
- Why ML? Applicable even when low statistics per bin.

P results and comparision(CLAS 2010)

C_x Results and comparision(CLAS 2007)

6

C_z Results and comparision(CLAS 2007)

Conclusion and Outlook

- Measured Λ polarization observables C_x , P and C_z using g12 dataset for 1.75 < W < 3.3 GeV.
 - 3 method: 1d/2d/ML methods, all showing consistent results.
 - 2 topologies analyzed: results are mostly self-consistent.
- Preliminary C_x/C_z results:
 - More data has been added to the previous measurements.
 - Statistical uncertainty are smaller than previous g1c results for W < 2.54 GeV.
 - In the good agreement with earlier CLAS results.
 - First time measurement for W > 2.54 GeV.

P results:

- agree well with CLAS 2010 results.
- Can be used to constrain non-resonant (t-channel) contribution.
- Suitable to study the higher mass resonances.

Thank You!

Event selection (cont...)

Timing difference between event start time from tagger and start counter. (< 1ns) Vertex distribution

Event selection (cont...)

Geometrical time-of-flight fiducial cut

Kinematic fitting

R values for the Λ

Background Subtraction

For 2Track; energy dependent background appears, binned on energy and applied background subtraction method.

Q Value Method:

Event-by-event basis method determining the signal event using Q-factor. M. Williams, M. Bellis, and C. A. Meyer, JINST 4, P10003 (2009).

