Latest Updates from the AlCap Experiment

Andrew Edmonds on behalf of the AICap collaboration

CIPANP2018, 1st June 2018

Lawrence Berkeley National Laboratory

Muon-to-Electron Conversion Searches

The next generation of muon-to-electron conversion experiments will search for the $\mu \rightarrow e$ conversion process, with a single event sensitivity of $\sim 10^{-17}$.

$$R_{\mu \to e} = rac{\mu^- + N(Z, A) \to e^- + N(Z, A)}{\mu^- + N(Z, A) \to
u_e + N(Z - 1, A)},$$

COMET @ J-PARC

Experimental Method: Stop $O(10^{10})$ muons per second in Al

Muon-to-Electron Conversion Searches

The next generation of muon-to-electron conversion experiments will search for the $\mu \rightarrow e$ conversion process, with a single event sensitivity of $\sim 10^{-17}$.

$$R_{\mu \to e} = \frac{\mu^- + \mathcal{N}(Z, A) \to e^- + \mathcal{N}(Z, A)}{\mu^- + \mathcal{N}(Z, A) \to \nu_e + \mathcal{N}(Z - 1, A)},$$

Experimental Method: Stop $O(10^{10})$ muons per second in Al

What happens when a muon is stopped by an atom?

A muonic atom is formed:

- the muon instantly falls down to the 1s orbital ightarrow X-rays
- after some time the muon will undergo one of the following processes:
 - $\mu^- \rightarrow e^- \overline{\nu}_e \nu_\mu$ (decay-in-orbit)
 - $\mu^- + N(Z, A) \rightarrow \nu_e + N(Z 1, A)$ (nuclear muon capture) $\rightarrow \gamma$ -rays, heavy charged particles, neutrons

Cartoon of the $\mu-e$ conversion process

Why do we care?

Heavy Charged Particles

- $\bullet\,$ proton with kinetic energy 5 MeV has momentum 100 MeV/c
 - will enter the detectors \rightarrow hit background
 - are highly ionising \rightarrow damage
- need a proton absorber \rightarrow how thin can we make it?

Neutrons

- will leave the experiment and hit the cosmic ray vetos and mimic a cosmic ray \rightarrow additional deadtime

Photons

• can be used to count the number of captured muons

We want to know the rate and spectrum of these emission products!

What do we know about the nuclear capture decay products?

Heavy Charged Particles:

- for Al: only know the high energy region (> 40 MeV)
- for low energy: only known for Si
- composition (p, d, t etc.) not measured

Neutrons:

• rate has been measured

(B. Macdonald et.al. Phys.Rev. 139 (1965) B1253)

(S. E. Sobottka and E. L. Wills Phys.Rev.Lett. 20 (1968) no.12, 596) Photons:

- X-rays and γ -rays are known
- any background lines? are delayed γ-rays strong enough?

Material	Transition	Intensity [%]	Energy [keV]
AI	2p - 1s	79.8 ± 0.8	346.828 ± 0.002
	3p-1s	7.62 ± 0.15	412.87 ± 0.05
Si	2p - 1s	80.3 ± 0.8	400.177 ± 0.005
	3p-1s	7.40 ± 0.20	476.80 ± 0.05

(D. F. Measday et al. Phys.Rev. C76 (2007) 035504)

AlCap

The AlCap experiment is a joint venture between the Mu2e and COMET collaborations to measure the rate and spectrum of individual charged particles, neutrons and photons after nuclear muon capture.

Three runs at PSI:

- 2013: charged particles and photons (AI, Si (passive))
- 2015a: neutrons and photons (Al, Ti, Pb, SS, Water and Mylar)
- 2015b: charged particles and photons (Al, Si (active), Ti)

Photo from 2013 Run

I will focus on the charged particle analysis

Experimental Setup

Run 2013 Setup

Experimental Setup

Particle ID

With the layered silicon detectors, we can **identify the different particle types** because dE/dx rises sharply when going to lower energies:

Left Detector System

Particle ID

Easy to **extract individual emission products** using simple cuts and check the arrival times are **consistent with the muonic atom lifetime**

• Si: 767 ns

EvdE Plot for Si dataset with cut to select protons

Arrival times for the selected protons

Currently evaluating efficiency and purity of cuts using MC.

Unfolding

Once we've extracted the particle band, we need to correct for energy lost in the target \rightarrow unfolding.

Currently **investigating systematic effects of unfolding** (e.g. assumed stopping depth)

Normalisation

When muon **stops** it emits X-rays as it transitions between atomic energy levels. Specifically we look for the 2p - 1s **transition**.

Currently resolving this $\sim 10\%$ discrepancy

Other Datasets

Analysis of other datasets going well:

Al 50 $\mu \rm{m}$

Al 100 μm

Ti 50 μ m

AlCap was formed to determine the **rate and spectrum of charged particles, neutrons and photons after nuclear muon capture** for the next generation of muon-electron conversion experiments

Expect to finish the charged particle analyses in the next few months

- band extraction efficiency and purity
- unfolding systematics
- resolve normalisation discrepancy (or live with it)

Thanks for listening!

And thanks to our respective funding agencies for their support!

Backup slides

Charged Lepton Flavour Violation

Current 90% UL: $B(\mu N \rightarrow eN \text{ on } Au) < 7 \times 10^{-13}$ (SINDRUM II)

Full X-Ray Spectrum

Si16b Dataset, Full X-Ray Spectrum

Response Matrix

