#### Measurement of the Weak Charge of the Proton by the Qweak Collaboration







#### Outline

Introduction to PVES and weak charge of the proton

- •Apparatus and analysis
- •Results and implications for new physics
- Future measurements

#### PHE/PPHI Joint session on Weak Parameters

#### Friday, Parallel 7

- Mikhail Gorshteyn, Calculations for
- interpreting the weak charge
- Frank Maas, P2 and MOLLER experiments
- •Gerald Gwinner, Atomic parity violation

#### PPHI session on Electrons and Muons Friday, Parallel 7

- Paul Souder, PVDIS with SOLID
- •Nils Feege, Electroweak physics at an EIC

NIVERSITY Virginia

# **Parity-Violating Electron Scattering**

Low Q<sup>2</sup> offers complementary probes of new physics at multi-TeV scales EDM,  $g_{\mu}$ -2, weak decays,  $\beta$  decay,  $0\nu\beta\beta$  decay, DM, LFV...

**Parity-Violating Electron Scattering:** Low energy weak neutral current couplings, precision weak mixing angle (SLAC, Jefferson Lab, Mainz)



Incident beam is longitudinally polarized
Change sign of longitudinal polarization
Measure fractional rate difference

$$A_{PV} = \frac{\sigma_R - \sigma_L}{\sigma_R + \sigma_L}$$

$$\boldsymbol{\sigma} \propto |A_{\gamma} + A_{\mathsf{Z}}|^2 \sim |A_{\gamma}|^2 + 2A_{\gamma}(A_{\mathsf{Z}})^* + \dots$$

Electroweak interference leading term in asymmetry, enhances weak signal

Parity violating electron scattering provides a sensitive probe for possible new neutral current interactions

Heavy Z's and neutrinos, technicolor, compositeness, extra dimensions, SUSY...

$$\left|\mathbf{A}_{\gamma}+\mathbf{A}_{\mathbf{Z}}+\mathbf{A}_{\mathrm{new}}
ight|^{\mathbf{2}}
ightarrow\mathbf{A}_{\gamma}^{\mathbf{2}}\left|\mathbf{1}+\mathbf{2}igg(rac{\mathbf{A}_{\mathbf{Z}}}{\mathbf{A}_{\gamma}}igg)+\mathbf{2}igg(rac{\mathbf{A}_{\mathrm{new}}}{\mathbf{A}_{\gamma}}igg)
ight|$$

**MVERSITY** 

## Weak Neutral Current Charge in the Standard Model

$$\mathcal{L}_{PV}^{EW} = \frac{G_F}{\sqrt{2}} \left[ g_A^e(\bar{e}\gamma_\mu\gamma_5 e) \cdot \sum_q g_V^q(\bar{q}\gamma^\mu q) + g_V^e(\bar{e}\gamma_\mu e) \cdot \sum_q g_A^q(\bar{q}\gamma^\mu\gamma_5 q) \right]$$

Effective electron-quark couplings



| At tree level: | EM<br>Charge | WNC Vector Charge              |
|----------------|--------------|--------------------------------|
| u              | +2/3         | $Q_W^u = -2 C_{1u}$            |
| d              | -1/3         | $Q_W^d = -2  C_{1d}$           |
| p = 2u + d     | +1           | $Q_W^p = -2(2C_{1u} + C_{1d})$ |
| n = u + 2d     | 0            | $Q_W^n = -2(C_{1u} + 2C_{1d})$ |

#### Electroweak fermion couplings

|          | Left                                      | Right                                     |
|----------|-------------------------------------------|-------------------------------------------|
| γ Charge | $0,\pm 1,\pm \frac{1}{3},\pm \frac{2}{3}$ | $0,\pm 1,\pm \frac{1}{3},\pm \frac{2}{3}$ |
| W Charge | $T = \pm \frac{1}{2}$                     | zero                                      |
| Z Charge | $T-q\sin^2\theta_W$                       | $-q\sin^2\theta_W$                        |

Radiative corrections incorporated in weak charge definition and scale dependence of  $\sin^2\theta_W$  are well controlled

$$\sin^2\theta_W \sim \frac{1}{4}$$
 so  $Q_W^p = 1 - 4 \sin^2\theta_W$  is strongly suppressed

MIVERSITY

#### Search for new neutral current contact interactions

*Low energy WNC interactions* ( $Q^2 << M_Z^2$ )

Heavy mediators = contact interactions

Consider  $f_1f_1 \rightarrow f_2f_2$  or  $f_1f_2 \rightarrow f_1f_2$ 

$$\mathcal{L}_{f_1 f_2} = \sum_{i,j=L,R} \frac{(g_{ij}^{12})^2}{\Lambda_{ij}^2} \bar{f}_{1i} \gamma_\mu f_{1i} \bar{f}_{2j} \gamma_\mu f_{2j}$$



 $\int_{f_2}^{J_1} \int_{f_2}^{J_1}$ 

mass scale Λ, coupling g for **each fermion** and **handedness** combination

Eichten, Lane and Peskin, PRL50 (1983)

New neutral current interactions with axial-vector electron, vector quark couplings would add in the effective neutral current coupling:

$$\mathcal{L} = \mathcal{L}_{\texttt{SM}} + \mathcal{L}_{\texttt{new}} \qquad rac{G_F}{\sqrt{2}}C_{1q} = rac{G_F}{\sqrt{2}}C_{1q}^{SM} + \left(rac{g_{AV}^{eq}}{\Lambda}
ight)^2$$

Conventional "mass limits" for new contact interaction: assume coupling with compositeness scale  $g^2=4\pi$ .

example: 4% measurement of  $Q_W^p$  corresponds to a mass limit of 33 TeV

Erler et al., Ann.Rev.Nucl.Part.Sci. 64 (2014)

#### **PVES and Nucleon Structure**

Assuming charge symmetry, the weak form-factors relate to electromagnetic form factors of the proton and neutron

$$4G_{E,M}^{pZ} = (1 - 4\sin^2\theta_W)G_{E,M}^{p\gamma} - G_{E,M}^{n\gamma} - G_{E,M}^s$$
Proton
Weak
Weak
Charge
Electromagnetic Strange Quark
Form Factors
Form Factor

At forward angles and small Q<sup>2</sup>, A<sub>PV</sub> accesses the weak charge

$$A_{PV} = \frac{\sigma_R - \sigma_L}{\sigma_R + \sigma_L} \xrightarrow[\theta \to 0]{Q^2 \to 0} - \frac{G_F Q^2}{4\sqrt{2}\pi\alpha} \left[ Q_W^p + Q^2 B(Q^2, \theta) \right]$$

B(Q<sup>2</sup>,θ) is a form-factor term.
 About 30% correction to A<sub>PV</sub> for
 Qweak. Well determined by
 existing PVES data.

NIVERSITY Virginia

CIPANP 2018 - Palm Springs, California

Form

Factor

# **APV and Extracting Qweak**

WNC elastic form-factors have been well studied in search of intrinsic nucleonic strangeness



Hadronic corrections for QWeak constrained in fit of all PVES data over various nuclear targets, Ε, θ, Q<sup>2</sup>

$$A_{PV} = -\frac{G_F Q^2}{4\sqrt{2}\pi\alpha} \left[ Q_W^p + Q^2 B(Q^2, \theta) \right]$$

#### Global fit, first results on Qwp

• All nuclear PVES data (hydrogen, deuterium, helium).

•5 parameters (C<sub>1u</sub>, C<sub>1d</sub>, isovector axial FF,  $\rho_s$ ,  $\mu_s$ )

• Illustration shown here at forward angle.



NIVERSITY



# 101 collaborators26 grad students11 post docs27 institutions

#### Institutions:

JNIVERSITY VIRGINIA

<sup>1</sup> University of Zagreb <sup>2</sup> College of William and Mary <sup>3</sup> A. I. Alikhanyan National Science Laboratory <sup>4</sup> Massachusetts Institute of Technology <sup>5</sup> Thomas Jefferson National Accelerator Facility <sup>6</sup> Ohio University <sup>7</sup> Christopher Newport University <sup>8</sup> University of Manitoba, <sup>9</sup> University of Virginia 10 TRIUMF <sup>11</sup> Hampton University <sup>12</sup> Mississippi State University <sup>13</sup> Virginia Polytechnic Institute & State Univ <sup>14</sup> Southern University at New Orleans <sup>15</sup> Idaho State University <sup>16</sup> Louisiana Tech University <sup>17</sup> University of Connecticut <sup>18</sup> University of Northern British Columbia <sup>19</sup> University of Winnipeg <sup>20</sup> George Washington University <sup>21</sup> University of New Hampshire <sup>22</sup> Hendrix College, Conway <sup>23</sup> University of Adelaide <sup>24</sup>Syracuse University <sup>25</sup> Duquesne University

KentoPaschke

# Final results from the full Qweak data set, collected 2010-2012

Nature 557 (2018) no.7704, 207-211

Nuclear Instruments and Methods A781 (2015) 105-133.



# **Measuring A<sub>PV</sub>**

Goal: measure beam helicity-correlated elastic scattering asymmetry to high precision

#### **Elastic signal focused on detector**



#### Rapid (1kHz) measurement over helicity reversals to cancel noise



#### Analog integration of detector current



**~7 GHz total rate** 1 GeV, 180 μA, 1.5 years

Kent Paschke

#### **The Qweak Spectrometer**





**Toroidal Spectrometer directs elastics onto one of 8 detectors** 



**Detectors:** 

- •2 meters long, fused silica
- •Lead radiator (2 cm thickness)
- •phototube at each end
- •~900 MHz per detector



Kent Paschke

JNIVERSITY ″VIRGINIA

CIPANP 2018 - Palm Springs, California

May 30, 2018



## **Beam Corrections and Beam quality**

 $A_{beam} = \sum_{i} \frac{\partial A}{\partial \chi_i} \Delta \chi_i$ where i runs over x,y,x'(angle),y'(angle), and energy.

Calibrate detector sensitivity with harmonic modulation

of beam parameters to determine  $\frac{\partial A}{\partial \chi_i}$ 



Main Detector Sensitivity to Vertical Beam Motion (Run 17504)

#### Careful setup of the polarized source

minimized helicity-correlated beam asymmetry

| Parameter | Helicity-Correlated<br>Difference Average | Typical Sensitivity |
|-----------|-------------------------------------------|---------------------|
| Х         | -2.7 nm                                   | -2 ppb/nm           |
| X'        | -0.14 nrad                                | 50 ppb/nrad         |
| Y         | -1.9 nm                                   | <0.2 ppb/nm         |
| Y'        | -0.05 nrad                                | <3 ppb/nrad         |
| Energy    | -0.6 ppb                                  | -6 ppb/ppb          |

Average beam asymmetries were small over course of run



#### Net Correction: 3.5 ± 1.7 ppb

NIVERSITY

## **Electron Beam Polarimetry**

Moller: ee scattering with iron foil

- 4T field, saturated magnetization
- experience with ~1% precision in Hall C
- modified spectrometer for 1 GeV
- invasive, low current only

**Compton:**  $e\gamma$  scattering with polarized green laser light • new polarimeter in Hall C

- low E<sub>beam</sub>: low analyzing power, low scattering energies
- novel diamond microstrip detector
- per mille control of laser polarization inside cavity



#### Result: ~0.6% precision on 89% polarization

Important milestone for high precision polarimetry needed for future program

Physical Review X6 (2016) no.1, 011013 Physics Letters B 766, 339 (2017)



# **Beamline Backgrounds**

Large asymmetries seen in background monitors were correlated with main detectors

• A background associated with re-scattering in the beam line eluded our collimation

- Radiators were added to the main detector reduce background importance
- Signal fraction  $f \sim 0.2\%$
- Unstable background asymmetry, correlated with beam halo

Studies included blocking octants

Asymmetry well measured by background detectors

MIVERSITY



Kent Paschke





Measured in various background monitors. Correlations between detectors were stable.

Net Correction: -1.2 ± 1.7 ppb

May 30, 2018

#### **Summary of Asymmetry Measurements**



Data subsets, with various methods of polarization reversal
Half-wave plate in source optics
E x B spin manipulation (injector)

• energy (g-2 precession)

Jniversity Wirginia

## **Polarization sensitive detectors**



**Precession in spectrometer**, so electrons arrive at detector with large radial polarization component

#### Polarization analyzing effect:

PMTs on opposite ends of each detector bar see opposite sign asymmetry shifts

- Spin-orbit coupling in e-Nuclear scattering does this: large asymmetries for large angles, at low energy (Mott polarimetry)
- Incident electron loses energy in lead radiator, analyzes in multiple scattering
- Only significant after is E<30 MeV or so, for large angles

Electron more likely to point towards one PMT or the other, depending on its incident polarization

NIVERSITY

## **Estimated Residual Bias from Polarization Sensitive Detectors**

- This cancels: positive asymmetry in one PMT, negative in the other
- Quality of cancellation depends on imperfections in each bar optical properties and alignment
- Abias dominated by optical and mechanical imperfections of each bar (e.g. mismatches, bevels, glue joint)
- Monte Carlo simulation of light collection for each bar, based on measured geometries and checked with observed responses



## **Blinded Analysis**



Two data sets (Runs 1 & 2), each blinded independently (hidden constant additive offset with ±60 ppb range) to avoid analysis bias

## **Completed Analysis**



Combined data sets, including accounting for correlated systematic uncertainty

| Period               | Asymmetry (ppb) | Stat. Unc. (ppb) | Syst. Unc. (ppb) | Tot. Uncertainty (ppb) |
|----------------------|-----------------|------------------|------------------|------------------------|
| Run 1                | -223.5          | 15.0             | 10.1             | 18.0                   |
| Run 2                | -227.2          | 8.3              | 5.6              | 10.0                   |
| Run 1 and 2 combined |                 |                  |                  |                        |
| with correlations    | -226.5          | 7.3              | 5.8              | 9.3                    |

# **Extrapolating to Q^2 = 0**

2013 Qweak result (commissioning data)



#### **Qweak of the Proton**

 $A_{PV} = -226.5 \pm 7.3 (\text{stat}) \pm 5.8 (\text{syst}) \text{ ppb at } Q^2 = 0.0249 (\text{GeV/c})^2$ 



Jniversity Wirginia

## Weak mixing angle $sin^2 \theta_W$



JNIVERSITY VIRGINIA

#### **Contact Interactions**

$$Q_W^p = -2(2C_{1u} + C_{1d})$$

New Physics Ruled Out @95% CL Below Mass Scale of  $\Lambda$ /g



Including <sup>133</sup>Cs APV result allows extraction of neutron weak charge & separation of  $C_{1u}$ ,  $C_{1d}$  quark coupling constants

| Qweak 2017 + PVES data base + APV <sup>133</sup> Cs |         |        |  |
|-----------------------------------------------------|---------|--------|--|
|                                                     | Value   | Error  |  |
| $Q_W^p$                                             | 0.0718  | 0.0045 |  |
| $Q_W^n$                                             | -0.9808 | 0.0063 |  |
| $C_{1u}$                                            | -0.1874 | 0.0022 |  |
| $C_{1d}$                                            | 0.3389  | 0.0025 |  |

APV: atomic parity violation <sup>133</sup>Cs C.S. Wood et al. Science **275**, 1759 (1997); Dzuba et al. PRL **109**, 203003 (2012)

JNIVERSITY VIRGINIA

#### **Contact Interactions**



Kent Paschke

CIPANP 2018 - Palm Springs, California

May 30, 2018

# New (light) physics: the Dark Z



Requires  $\delta < \sim 10^{-3}$  to have remained hidden at the Z-pole and in meson decay

Davoudiasl, Lee, Marciano Phys.Rev.Lett. 109 (2012) 031802 Phys.Rev. D85 (2012) 115019 Phys.Rev. D89 (2014) 9, 095006 Phys.Rev. D92 (2015) 5, 055005

NIVERSITY

## **BSM Models and Constraints**

SM is low energy limit of effective field theory with towers of higher dimension operators

$$L = L_{SM} + \Sigma \frac{c_i}{\Lambda^2} O_i^{d=6} + \sigma \frac{c_i}{\Lambda^4} O_i^{d=8} + \dots$$

(h/t Sally Dawson)



Leptoquarks



*e.g.* Erler, Kurylov, Ramsey-Musolf, Phys. Rev. D **68**, 016006 (2003)

**Right-handed Charge Currents** 

 $\epsilon_L vs. \epsilon_R$ 

Vincenzo Cirigliano, arXiv:1703.074751

Kent Paschke

NIVERSITY Virginia

#### **Future PVES**

10010 Qweak experimental precision is the Pioneering 1000%  $10^{-4}$ Strange Quark Studies best yet for a PVES experiment **Standard Model Tests**  $\mathbf{E}1$ 2010 · **Neutron Radius** 10<sup>-5</sup> Higher Mainz-B **Precision** SOLIT 10<sup>−6</sup>⊧ E  $\delta(\mathbf{A}_{\mathbf{PV}})$ H-He  $10^{-7}$ **PREX-I** E158 <sup>O</sup>PREX-II 10<sup>-8</sup> L **Q**weak<sup>•</sup> OMESA-12C Future standard model tests will build on 10-91 MOLLEŔ the Qweak experience to improve or **MEŚA-P**2 **Smaller Asymmetry** complement bounds on new physics 10<sup>-10</sup> 10<sup>-8</sup> 10<sup>-5</sup> 10<sup>-7</sup>  $10^{-6}$  $10^{-3}$  $10^{-4}$ A<sub>PV</sub>

CIPANP 2018 - Palm Springs, California

JNIVERSITY VIRGINIA

Kent Paschke

#### P2 at MESA / Mainz



Frank Maas et al., arXiv:1802.04759

- E<sub>beam</sub> = 155 MeV, 25-45°
- Q<sup>2</sup> = 0.0045 GeV<sup>2</sup>

JNIVERSITY VIRGINIA

- 60 cm target, 150 uA, 10<sup>4</sup> hours
- A<sub>PV</sub> = -40 ppb to 1.4% (0.56ppb)
- δ(sin<sup>2</sup>θ<sub>W</sub>) = 0.00033 (0.14%)

Development underway
Funding approved
Start 2020+

3.3x more precise than Qweak, similar to best collider measurements

# **MOLLER at 11 GeV JLab**



**PV-DIS** 



**Deep Inelastic Scattering from Deuterium** 

at high  $x_b$  sensitive to quark vector ( $C_{1q}$ ) and *axial* ( $C_{2q}$ ) weak charges



SOLID-PVDIS at JLab, 11 GeV, part of SOLID spectrometer project



## **Summary**



A precise measurement of the proton weak charge has been completed, providing a new tight constraint on possible new physics

#### Interpretable, robust measurement

- hadronic structure correction well known from global PVES data set
- Radiative corrections are small and now precisely calculated

Unprecedented precision enabled by technological advances, preparing for the next generation of PVES experiments

Electroweak physics with PVES is a powerful component of the low energy fundamental symmetries program

• P2, MOLLER, SOLID: Complementary, competitive with collider for precision on  $sin^2\theta_W$ • Search for new interactions from 100 MeV to 10s of TeV

A rich experimental program is envisioned over the next 10 years

at Jefferson Lab and Mainz MESA facility

MIVERSITY

31

# Backup

#### **Electroweak Radiative Corrections**

In the Standard Model, the weak charge is *defined* at  $Q^2 = 0$ , E = 0.



Full expression for  $Q_W^p$  has energy dependent corrections – need precise calculations

The  $\Box_{WW}$  and  $\Box_{ZZ}$  are well determined from pQCD (  $\propto \frac{1}{q^2 - M_{W(Z)}^2 + i\epsilon}$  )

The  $\Box_{\gamma Z}$  isn't pQCD friendly due to the photon leg (  $\propto \frac{1}{q^2 + i\varepsilon}$  )

NIVERSITY

#### **Electroweak Radiative Corrections**

 $Q_W^p$  Standard Model (Q<sup>2</sup> = 0) [2016]  $Q_W^p$  Experiment Final Uncertainty [2017]

 $0.0708 \pm 0.0003 \pm 0.0045$ 

#### $Q_W^p = \left[1 + \Delta \rho + \Delta_e\right] \left[ \left(1 - 4\sin^2\theta_W(0)\right) + \Delta_{e'} \right] + \Box_{WW} + \Box_{ZZ} + \Box_{\gamma Z}$

| Correction to Q <sup>p</sup> <sub>Weak</sub> | Uncertainty       |
|----------------------------------------------|-------------------|
| $\Delta sin \theta_W (M_Z)$                  | ± 0.0006          |
| Zγ box (6.4% ± 0.6%)                         | 0.00459 ± 0.00044 |
| $\Delta sin  \theta_W  (Q)_{hadronic}$       | ± 0.0003          |
| WW, ZZ box - pQCD                            | ± 0.0001          |
| Charge symmetry                              | 0                 |
| Total                                        | ± 0.0008          |

Erler et al., PRD 68(2003)016006.

Calculations of Two Boson Exchange effects on  $Q_W^p$  at our Kinematics:

Recent theory calculations applied to entire data set of PV measurements as appropriate in global analysis.

Our  $\Delta A_{ep}$  precise enough that corrections to higher Q<sup>2</sup> points make little difference in extrapolation to zero Q<sup>2</sup>.

#### Energy Dependence *γ*Z correction:

Hall, N.L., Blunden, P.G., Melnitchouk, W., Thomas, A.W., Young, R.D. Quark-hadron duality constraints on  $\gamma Z$  box corrections to parity-violating elastic scattering. Phys. Lett. B 753, 221-226 (2016).

#### Axial Vector yZ correction:

Peter Blunden, P.G., Melnitchouk, W., Thomas, A.W. New Formulation of  $\gamma Z$  Box Corrections to the Weak Charge of the Proton. Phys. Rev. Lett. 107, 081801 (2011).

#### Q<sup>2</sup> Dependence γZ:

Gorchtein, M., Horowitz, C.J., Ramsey-Musolf, M.J. Model dependence of the  $\gamma$ Z dispersion correction to the parity-violating asymmetry in elastic ep scattering. Phys. Rev. C 84, 015502 (2011).

NIVERSITY

## **Axial FF**



Figure adapted from D. Balaguer Rios et al. (PVA4)

Global fit including Q<sub>weak</sub> is in good agreement with theory [S.L. Zhu, S.J. Puglia, B.R. Holstein, M.J. Ramsey-Musolf, Phys. Rev. D **62**, 033008 (2000)]



## **Polarization Sensitive Detector**

Mott scattering asymmetry: low energy phenomenon





- The electron showering through lead radiator can become polarization-dependent via multiple scattering
- Only significant after is E<30 MeV or so, for large angles
- Cancellation between positive asymmetry for small angle scattering, negative for large angle scattering
- Electron ends up more likely to point toward one PMT, depending on its incident polarization

## **Aluminum Windows**

#### Background from detected electrons which scattered from thin Aluminum entrance and exit windows

- Measure ~1500 ppb asymmetry using thick calibration targets (identical Al alloy)
- Measure the  $(2.52 \pm 0.06)\%$  signal fraction from windows
- Small corrections for radiative effects (MC simulation)



CIPANP 2018 - Palm Springs, California

Aluminum Parity-Violating Asymmetry

Kent Paschke

May 30, 2018

## **Asymmetry and Net Corrections**

| weight:             | 20%                        | 80%                          |
|---------------------|----------------------------|------------------------------|
| Quantity            | Run 1                      | Run 2                        |
| $A_{\rm raw}$       | $-192.7 \pm 13.2$ ppb      | $-170.7 \pm 7.3 \text{ ppb}$ |
| $A_{\mathrm{T}}$    | $0 \pm 1.1$ ppb            | $0\pm0.7~{ m ppb}$           |
| $A_{ m L}$          | $1.3 \pm 1.0 \text{ ppb}$  | $1.2\pm0.9~\mathrm{ppb}$     |
| $A_{ m BCM}$        | $0 \pm 4.4$ ppb            | $0\pm2.1~\mathrm{ppb}$       |
| $A_{ m BB}$         | $3.9 \pm 4.5 \text{ ppb}$  | $-2.4 \pm 1.1 \text{ ppb}$   |
| $A_{\mathrm{beam}}$ | $18.5 \pm 4.1 \text{ ppb}$ | $0.0 \pm 1.1 \text{ ppb}$    |
| $A_{ m bias}$       | $4.3 \pm 3.0 \text{ ppb}$  | $4.3 \pm 3.0 \text{ ppb}$    |
| P                   | $87.7\pm1.1\%$             | $88.71 \pm 0.55\%$           |
| $f_1$               | $2.471 \pm 0.056\%$        | $2.516 \pm 0.059\%$          |
| $A_1$               | $1.514\pm0.077~\rm{ppm}$   | $1.515\pm0.077~\rm{ppm}$     |
| $f_2$               | $0.193 \pm 0.064\%$        | $0.193 \pm 0.064\%$          |
| $f_3$               | $0.12\pm0.20\%$            | $0.06\pm0.12\%$              |
| $ A_3 $             | $-0.39 \pm 0.16$ ppm       | $-0.39\pm0.16\mathrm{ppm}$   |
| $ f_4 $             | $0.018 \pm 0.004\%$        | $0.018 \pm 0.004\%$          |
| $ A_4 $             | $-3.0 \pm 1.0$ ppm         | $-3.0\pm1.0\mathrm{ppm}$     |
| $R_{ m RC}$         | $1.010\pm0.005$            | $1.010\pm0.005$              |
| $R_{ m Det}$        | $0.9895 \pm 0.0021$        | $0.9895 \pm 0.0021$          |
| $R_{ m Acc}$        | $0.977 \pm 0.002$          | $0.977\pm0.002$              |
| $R_{Q^2}$           | $0.9927 \pm 0.0056$        | $1.0\pm0.0056$               |

Beamline rescattering background Beam asymmetries Polarization sensitive detectors

Aluminum windows