Model-Independent Constraints on $R_{J/\Psi}$ 18xx.xxxx

Hank Lamm

with Tom Cohen and Rich Lebed

29 May 2018

CIPANP2018

Constraints on $\overline{R_{J/\Psi}}$

29 May, 2018

29 May, 2018 2 / 1

3

メロト メタト メヨト メヨト

Who ordered that?

Within the Standard Model, *lepton universality* is broken only by the Higgs interaction

Who ordered that?

Within the Standard Model, *lepton universality* is broken only by the Higgs interaction

...but m_{ν} implies this isn't the end of the story

Hank Lamm

Constraints on $R_{I/\Psi}$

...so let's do some precision physics!

3

メロト メタト メヨト メヨト

...so let's do some precision physics!

...so let's do some precision physics!

$$R(h_b \to h_c) \equiv \frac{\mathcal{B}(h_b \to h_c \tau \bar{\nu}_\tau)}{\mathcal{B}(h_b \to h_c l \bar{\nu}_l)} = ???$$

Ratios of semileptonic b-quark decays, they persisted...

Ratio	Exp	R_{exp}	R_{theory}
$R(B \to \pi^-)$	BELLE	< 1.93 (95% CL)	0.641(17)
$R(B \to D)$	BaBaR	$0.469(84)_{stat}(53)_{syst}$	0.300(8)
$R(B \to D^*)$	PDG	0.328(22)	0.252(3)
$R(B_c^+ \to J/\Psi)$	$LHCb^1$	$0.71(0.17)_{stat}(0.18)_{syst}$	2

¹Aaij:2017tyk.

Hank Lamm

Ratios of semileptonic b-quark decays, they persisted...

¹Aaij:2017tyk.

Only model-dependent predictions exist

< E

Only model-dependent predictions exist

Taking the largest/smallest $\mathcal{B}(B_c^+ \to J/\psi \tau^+ \bar{\nu}_{\tau})$ and $\mathcal{B}(B_c^+ \to J/\psi l^+ \bar{\nu}_l)$ and compute a **worst-case** scenario $R_{J/\psi} = [0,3]$

The structure of the **Standard Model** puts **restrictions** on how the hadronic matrix element can vary

The structure of the **Standard Model** puts **restrictions** on how the hadronic matrix element can vary

$$\langle V(p',\epsilon)|V^{\mu} - A^{\mu}|P(p)\rangle = \frac{2i\epsilon^{\mu\nu\rho\sigma}}{M+m} \epsilon_{\nu}^{*} p'_{\rho} p_{\sigma} V(q^{2}) - (M+m)\epsilon^{*\mu} A_{1}(q^{2})$$
$$+ \frac{\epsilon^{*} \cdot q}{M+m} (p+p')^{\mu} A_{2}(q^{2}) + 2m \frac{\epsilon^{*} \cdot q}{q^{2}} q^{\mu} A_{3}(q^{2}) - 2m \frac{\epsilon^{*} \cdot q}{q^{2}} q^{\mu} A_{0}(q^{2}) \quad (1)$$
$$A_{3}(q^{2}) = \frac{M+m}{2m} A_{1}(q^{2}) - \frac{M-m}{2m} A_{2}(q^{2}) \quad (2)$$

where $A_3(0) = A_0(0)$ and the masses are given by $M = m_P, m = m_V$

イロト イポト イヨト イヨト

Hank Lamm

• Lattice data for $V(q^2), A_1(q^2)$ aren't wildly off

メロト メタト メヨト メヨト

3

- Lattice data for $V(q^2), A_1(q^2)$ aren't wildly off
- Semi-positive definiteness of form factor: $F_i(q_{\max}^2), F_i(0) \ge 0$

- 32

< E >

- Lattice data for $V(q^2), A_1(q^2)$ aren't wildly off
- Semi-positive definiteness of form factor: $F_i(q_{\max}^2), F_i(0) \ge 0$
- Upper limit from state overlap: $F_i(q_{\max}^2), F_i(0) \leq \mathcal{N}_{\Gamma}(M, m) \times 1$

- Lattice data for $V(q^2), A_1(q^2)$ aren't wildly off
- Semi-positive definiteness of form factor: $F_i(q_{\max}^2), F_i(0) \ge 0$
- Upper limit from state overlap: $F_i(q_{\max}^2), F_i(0) \leq \mathcal{N}_{\Gamma}(M, m) \times 1$
- Coefficient bounds from dispersive relations: $\sum_{i,n=0}a_{in}^2\leq 1$

- Lattice data for $V(q^2), A_1(q^2)$ aren't wildly off
- Semi-positive definiteness of form factor: $F_i(q_{\max}^2), F_i(0) \ge 0$
- Upper limit from state overlap: $F_i(q_{\max}^2), F_i(0) \leq \mathcal{N}_{\Gamma}(M, m) \times 1$
- Coefficient bounds from dispersive relations: $\sum_{i,n=0} a_{in}^2 \leq 1$

Strict prediction would require **additional assumptions** about priors, but min/max values are **independent** of this

=

95% CL Upper and Lower Bounds on $R_{J/\psi}$

$\% f_{lat}$	n = 1	n=2
1	[0.257, 0.314]	[0.2495, 0.3256]
5	[0.252, 0.317]	[0.2442, 0.3294]
20	[0.229, 0.333]	$\left[0.2191,\! 0.345 ight]$

=

95% CL Upper and Lower Bounds on $R_{J/\psi}$

$\% f_{lat}$	n = 1	n=2
1	[0.257, 0.314]	[0.2495, 0.3256]
5	[0.252, 0.317]	[0.2442, 0.3294]
20	[0.229, 0.333]	$\left[0.2191,\! 0.345 ight]$

n > 2 unlikely to strongly affect bound, because $\frac{a_{n+1}}{a_n} \ge z_{\max} = 0.027$ and $\sum a_{ni}^2 \le 1$ heavily penalize larger n

Updated $R_{J/\psi}$ Plot

Updated $R_{J/\psi}$ Plot

Lattice NRQCD results provide limited input²

2+1+1 HISQ, a = 0.09 fm, $m_s/m_l \approx 5$ from MILC with NRQCD for b

Hank Lamm

²Colquhoun:2016osw.

Let's talk about analytic structure

Э

< 3 > <

Let's talk about analytic structure

Consider a $J^{\mu} \equiv \bar{c} \Gamma^{\mu} b$

3

イロト イポト イヨト イヨト

Consider a $J^{\mu} \equiv \bar{c} \Gamma^{\mu} b$

The Green's function, $\Pi_J^{\mu\nu}$, is split into spin-1 (Π_J^T) and spin-0 (Π_J^L) and (after subtractions) give

$$\chi_J^L(q^2) \equiv \frac{\partial \Pi_J^L}{\partial q^2} = \frac{1}{\pi} \int_0^\infty dt \, \frac{\operatorname{Im} \Pi_J^L(t)}{(t-q^2)^2} \tag{3}$$

where Im $\Pi_J^{T,L}(q^2) = \frac{1}{2} \sum_X (2\pi)^4 \delta^4(q-p_X) \left| \langle 0 | J | X \rangle \right|^2$ are spectral functions

Consider a $J^{\mu} \equiv \bar{c} \Gamma^{\mu} b$

The Green's function, $\Pi_J^{\mu\nu}$, is split into spin-1 (Π_J^T) and spin-0 (Π_J^L) and (after subtractions) give

$$\chi_J^L(q^2) \equiv \frac{\partial \Pi_J^L}{\partial q^2} = \frac{1}{\pi} \int_0^\infty dt \, \frac{\operatorname{Im} \Pi_J^L(t)}{(t-q^2)^2} \tag{3}$$

where Im $\Pi_J^{T,L}(q^2) = \frac{1}{2} \sum_X (2\pi)^4 \delta^4(q-p_X) |\langle 0|J|X \rangle|^2$ are spectral functions We **need** $\chi_J^{L,T}(q^2)$ computable in pQCD at $q^2 = 0$

Mapping $t \to z$

Use a **conformal** variable transformation

<ロ> (四) (四) (三) (三) (三) (三)

$$z(t;t_0) \equiv \frac{\sqrt{t_{\rm bc} - t} - \sqrt{t_{\rm bc} - t_0}}{\sqrt{t_{\rm bc} - t} + \sqrt{t_{\rm bc} - t_0}},\tag{4}$$

 $t_{\rm bc}$ is production threshold of lightest states in channel, $BD^{(*)}$, t_0 defined to improve convergence. z is real for $t \leq t_{\rm bc}$ and a pure phase for $t \geq t_{\rm bc}$.

イロト イポト イヨト イヨト 二日

$$z(t;t_0) \equiv \frac{\sqrt{t_{\rm bc} - t} - \sqrt{t_{\rm bc} - t_0}}{\sqrt{t_{\rm bc} - t} + \sqrt{t_{\rm bc} - t_0}},\tag{4}$$

 $t_{\rm bc}$ is production threshold of lightest states in channel, $BD^{(*)}$, t_0 defined to improve convergence. z is real for $t \leq t_{\rm bc}$ and a pure phase for $t \geq t_{\rm bc}$.

$$z(t;t_0) \equiv \frac{\sqrt{t_{\rm bc} - t} - \sqrt{t_{\rm bc} - t_0}}{\sqrt{t_{\rm bc} - t} + \sqrt{t_{\rm bc} - t_0}},\tag{4}$$

 $t_{\rm bc}$ is production threshold of lightest states in channel, $BD^{(*)}$, t_0 defined to improve convergence. z is real for $t \leq t_{\rm bc}$ and a pure phase for $t \geq t_{\rm bc}$.

Hank Lamm

29 May, 2018

13 / 15

$$z(t;t_0) \equiv \frac{\sqrt{t_{\rm bc} - t} - \sqrt{t_{\rm bc} - t_0}}{\sqrt{t_{\rm bc} - t} + \sqrt{t_{\rm bc} - t_0}},\tag{4}$$

 $t_{\rm bc}$ is production threshold of lightest states in channel, $BD^{(*)}$, t_0 defined to improve convergence. z is real for $t \leq t_{\rm bc}$ and a pure phase for $t \geq t_{\rm bc}$.

$$z(t;t_0) \equiv \frac{\sqrt{t_{\rm bc} - t} - \sqrt{t_{\rm bc} - t_0}}{\sqrt{t_{\rm bc} - t} + \sqrt{t_{\rm bc} - t_0}},\tag{4}$$

 $t_{\rm bc}$ is production threshold of lightest states in channel, $BD^{(*)}$, t_0 defined to improve convergence. z is real for $t \leq t_{\rm bc}$ and a pure phase for $t \geq t_{\rm bc}$.

э

< 3 > <

$$\frac{1}{2\pi i} \sum_{i} \oint_{C} \frac{dz}{z} |\phi_{i}(z)P_{i}(z)F_{i}(z)|^{2} \le 1, \qquad (5)$$

Э

イロト イポト イヨト イヨト

$$\frac{1}{2\pi i} \sum_{i} \oint_{C} \frac{dz}{z} |\phi_i(z) P_i(z) F_i(z)|^2 \le 1, \qquad (5)$$

Intuition: Fraction of the $W \Pi(t)$ given by subset, implying 1 is a **very** conservative bound

$$\frac{1}{2\pi i} \sum_{i} \oint_{C} \frac{dz}{z} |\phi_{i}(z)P_{i}(z)F_{i}(z)|^{2} \le 1, \qquad (5)$$

Intuition: Fraction of the $W \Pi(t)$ given by subset, implying 1 is a **very** conservative bound

Take an **expansion** around $z \approx 0$ ($z_{\text{max}} = 0.027$)

$$F_i(t) = \frac{1}{|P_i(t)|\phi_i(t;t_0)} \sum_{n=0}^{\infty} a_{in} z(t;t_0)^n , \qquad (6)$$

$$\frac{1}{2\pi i} \sum_{i} \oint_{C} \frac{dz}{z} |\phi_{i}(z)P_{i}(z)F_{i}(z)|^{2} \le 1, \qquad (5)$$

Intuition: Fraction of the $W \Pi(t)$ given by subset, implying 1 is a **very** conservative bound

Take an **expansion** around $z \approx 0$ ($z_{\text{max}} = 0.027$)

$$F_i(t) = \frac{1}{|P_i(t)|\phi_i(t;t_0)} \sum_{n=0}^{\infty} a_{in} z(t;t_0)^n , \qquad (6)$$

with the bound now expressed as

$$\sum_{i;n=0}^{\infty} a_{in}^2 \le 1.$$
(7)

$$\frac{1}{2\pi i} \sum_{i} \oint_{C} \frac{dz}{z} |\phi_{i}(z)P_{i}(z)F_{i}(z)|^{2} \le 1, \qquad (5)$$

Intuition: Fraction of the $W \Pi(t)$ given by subset, implying 1 is a **very** conservative bound

Take an **expansion** around $z \approx 0$ ($z_{\text{max}} = 0.027$)

$$F_i(t) = \frac{1}{|P_i(t)|\phi_i(t;t_0)} \sum_{n=0}^{\infty} a_{in} z(t;t_0)^n , \qquad (6)$$

with the bound now expressed as

$$\sum_{n=0}^{\infty} a_{in}^2 \le 1.$$

$$\tag{7}$$

Form factors **cannot** change arbitrarily fast!

Hank Lamm

Constraints on $R_{J/\Psi}$

29 May, 2018

14/15

TT -	1 .	т	
Han	w .	1.am	m
IICHI.	<u>.</u>	1.00111	

• With dispersive analysis, lattice data, and physical constraints, a bound on the SM $R_{J/\Psi}$ can be made without any recourse to models

- With dispersive analysis, lattice data, and physical constraints, a bound on the SM $R_{J/\Psi}$ can be made **without** any recourse to models
- **Improvement** in existing lattice form factors, or **any** information about the remaining two can **substantially** shrink bounds

- With dispersive analysis, lattice data, and physical constraints, a bound on the SM $R_{J/\Psi}$ can be made **without** any recourse to models
- **Improvement** in existing lattice form factors, or **any** information about the remaining two can **substantially** shrink bounds
- Including other channels could reduce bounds, since typical $\sum a_n^2 \approx 1$

- With dispersive analysis, lattice data, and physical constraints, a bound on the SM $R_{J/\Psi}$ can be made **without** any recourse to models
- **Improvement** in existing lattice form factors, or **any** information about the remaining two can **substantially** shrink bounds
- Including other channels could reduce bounds, since typical $\sum a_n^2 \approx 1$

Questions?