Model-Independent Constraints on $R_{J/\Psi}$ 18xx.xxxxx

Hank Lamm

with Tom Cohen and Rich Lebed

 $\begin{array}{ccc} \leftarrow & \leftarrow & \rightarrow & \rightarrow \end{array}$

29 May 2018

CIPANP2018

Hank Lamm [Constraints on](#page-13-0) $R_{J/\Psi}$ 29 May, 2018 1/15

 \equiv

 2990

 $A \equiv \mathbf{1} \rightarrow A \pmb{\overline{B}} \rightarrow A \pmb{\overline{B}} \rightarrow A \pmb{\overline{B}} \rightarrow$

Who ordered that?

Within the Standard Model, lepton universality is broken only by the Higgs interaction

 \leftarrow \Box

 $2Q$

Who ordered that?

Within the Standard Model, lepton universality is broken only by the Higgs interaction

...but m_{ν} implies this isn't the e[nd](#page-2-0) [of](#page-4-0) [t](#page-2-0)[he](#page-3-0) [st](#page-0-0)[o](#page-1-0)[r](#page-4-0)[y](#page-5-0)

 $\begin{array}{cccccccccccccc} 4 & \Box & \rightarrow & \rightarrow & 4 \end{array}$

 \equiv

 $2QQ$

...so let's do some precision physics!

 \equiv

 $\leftarrow \equiv +$

 $\begin{array}{cccccccccccccc} 4 & \Box & \rightarrow & 4 & \overline{c} \overline{d} & \rightarrow & 4 & \overline{c} & \rightarrow \end{array}$

 $2Q$

...so let's do some precision physics!

イロト イ母ト イミト イヨト

∴ ≊

 $2QQ$

...so let's do some precision physics!

イロト イ母ト イミト イヨト

 $2QQ$

Ratios of semileptonic b−quark decays, they persisted...

 $1Aaij:2017tyk.$

4 ロ → 4 伊

 $2QQ$

 \rightarrow \equiv

 $=$

Ratios of semileptonic b−quark decays, they persisted...

 1 Aaij:2017tyk.

 $2QQ$

K ロ ⊁ K 倒 ≯ K ミ ≯ K ミ ≯

Only model-dependent predictions exist

 \equiv

 $\mathbf{A} = \mathbf{A} \oplus \mathbf{B} \oplus \mathbf{A} \oplus \mathbf{B} \oplus \mathbf{A}$

4 ロト 4 旬

 $2Q$

Only model-dependent predictions exist

Taking the largest/smallest $\mathcal{B}(B_c^+\to J/\psi\tau^+\bar{\nu}_\tau)$ and $\mathcal{B}(B_c^+\to J/\psi l^+\bar{\nu}_l)$ and compute a **worst-case** scenario $R_{J/\psi} = [0, 3]$

 \equiv

 QQ

 $\mathbf{A} = \mathbf{A} \oplus \mathbf{B} \oplus \mathbf{A} \oplus \mathbf{B} \oplus \mathbf{A}$

4 ロ ト 4 旬

The structure of the Standard Model puts restrictions on how the hadronic matrix element can vary

 \leftarrow \Box \rightarrow

 \rightarrow \equiv

 $2QQ$

The structure of the Standard Model puts restrictions on how the hadronic matrix element can vary

$$
\langle V(p',\epsilon)|V^{\mu} - A^{\mu}|P(p)\rangle = \frac{2i\epsilon^{\mu\nu\rho\sigma}}{M+m} \epsilon_{\nu}^{*}p'_{\rho}p_{\sigma}V(q^{2}) - (M+m)\epsilon^{*\mu}A_{1}(q^{2}) + \frac{\epsilon^{*} \cdot q}{M+m}(p+p')^{\mu}A_{2}(q^{2}) + 2m\frac{\epsilon^{*} \cdot q}{q^{2}}q^{\mu}A_{3}(q^{2}) - 2m\frac{\epsilon^{*} \cdot q}{q^{2}}q^{\mu}A_{0}(q^{2}) \tag{1}
$$

$$
A_{3}(q^{2}) = \frac{M+m}{2m}A_{1}(q^{2}) - \frac{M-m}{2m}A_{2}(q^{2}) \tag{2}
$$

where $A_3(0) = A_0(0)$ and the masses are given by $M = m_P, m = m_V$

 OQ

 $\mathbf{A} = \mathbf{A} \cdot \mathbf{B} + \mathbf{A} \cdot \mathbf{B} + \mathbf{A}$

 \leftarrow \Box

Hank Lamm [Constraints on](#page-0-0) $R_{J/\Psi}$ 29 May, 2018 8 / 15

 $2QQ$

 $\mathcal{A} \cdot \Box \rightarrow \mathcal{A} \cdot \mathcal{B} \rightarrow \mathcal{A} \cdot \Xi \rightarrow \mathcal{A} \cdot \Xi \rightarrow \mathcal{A} \cdot \Xi$

Lattice data for $V(q^2)$, $A_1(q^2)$ aren't wildly off

 \equiv

 $2QQ$

 $AB + AB + AB +$

- Lattice data for $V(q^2)$, $A_1(q^2)$ aren't wildly off
- Semi-positive definiteness of form factor: $F_i(q_{\text{max}}^2), F_i(0) \ge 0$

 \equiv

 PQQ

KABYABY

 \leftarrow \Box \rightarrow

- Lattice data for $V(q^2)$, $A_1(q^2)$ aren't wildly off
- Semi-positive definiteness of form factor: $F_i(q_{\text{max}}^2), F_i(0) \ge 0$
- Upper limit from state overlap: $F_i(q_{\text{max}}^2), F_i(0) \leq \mathcal{N}_{\Gamma}(M,m) \times 1$

 QQQ

- Lattice data for $V(q^2)$, $A_1(q^2)$ aren't wildly off
- Semi-positive definiteness of form factor: $F_i(q_{\text{max}}^2), F_i(0) \ge 0$
- Upper limit from state overlap: $F_i(q_{\text{max}}^2), F_i(0) \leq \mathcal{N}_{\Gamma}(M,m) \times 1$
- Coefficient bounds from dispersive relations: $\sum_{i,n=0} a_{in}^2 \le 1$

 QQQ

- Lattice data for $V(q^2)$, $A_1(q^2)$ aren't wildly off
- Semi-positive definiteness of form factor: $F_i(q_{\text{max}}^2), F_i(0) \ge 0$
- Upper limit from state overlap: $F_i(q_{\text{max}}^2), F_i(0) \leq \mathcal{N}_{\Gamma}(M,m) \times 1$
- Coefficient bounds from dispersive relations: $\sum_{i,n=0} a_{in}^2 \le 1$

Strict prediction would require additional assumptions about priors, but min/max values are independent of this

 OQ

95% CL Upper and Lower Bounds on $R_{J/\psi}$

 \leftarrow

 $2QQ$

 $=$

95% CL Upper and Lower Bounds on $R_{J/\psi}$

 $n > 2$ unlikely to strongly affect bound, because $\frac{a_{n+1}}{a_n} \ge z_{\text{max}} = 0.027$ and $\sum a_{ni}^2 \leq 1$ heavily penalize larger n

 Ω

Updated $R_{J/\psi}$ Plot

Updated $R_{J/\psi}$ Plot

Lattice NRQCD results provide limited input²

2+1+1 HISQ, $a = 0.09$ fm, $m_s/m_l \approx 5$ from MILC with NRQCD for b

 \leftarrow

 299

²Colquhoun:2016osw.

Let's talk about analytic structure

 $\begin{array}{cccccccccccccc} 4 & \Box & \rightarrow & \rightarrow & 4 \end{array}$ 向 $\mathbb{R}^n \times \mathbb{R}^n \xrightarrow{\sim} \mathbb{R}^n$ \equiv

 $2QQ$

 \equiv

Let's talk about analytic structure

Consider a $J^{\mu} \equiv \bar{c}\Gamma^{\mu}b$

 \equiv

 $2QQ$

 $A \equiv \mathbf{1} \rightarrow A \pmb{\overline{B}} \rightarrow A \pmb{\overline{B}} \rightarrow A \pmb{\overline{B}} \rightarrow$

Consider a $J^{\mu} \equiv \bar{c}\Gamma^{\mu}b$

The Green's function, $\Pi_J^{\mu\nu}$, is split into spin-1 (Π_J^T) and spin-0 (Π_J^L) and (after subtractions) give

$$
\chi_J^L(q^2) \equiv \frac{\partial \Pi_J^L}{\partial q^2} = \frac{1}{\pi} \int_0^\infty dt \, \frac{\operatorname{Im} \Pi_J^L(t)}{(t - q^2)^2} \tag{3}
$$

where $\text{Im }\Pi_{J}^{T,L}(q^2) = \frac{1}{2}\sum_{X}(2\pi)^4\delta^4(q-p_X)\left|\langle 0|J|X\rangle\right|^2$ are spectral functions

Consider a $J^{\mu} \equiv \bar{c}\Gamma^{\mu}b$

The Green's function, $\Pi_J^{\mu\nu}$, is split into spin-1 (Π_J^T) and spin-0 (Π_J^L) and (after subtractions) give

$$
\chi_J^L(q^2) \equiv \frac{\partial \Pi_J^L}{\partial q^2} = \frac{1}{\pi} \int_0^\infty dt \, \frac{\operatorname{Im} \Pi_J^L(t)}{(t - q^2)^2} \tag{3}
$$

where $\text{Im }\Pi_{J}^{T,L}(q^2) = \frac{1}{2}\sum_{X}(2\pi)^4\delta^4(q-p_X)\left|\langle 0|J|X\rangle\right|^2$ are spectral functions We need $\chi_J^{L,T}(q^2)$ computable in pQCD at $q^2 = 0$

Mapping $t \to z$

Use a conformal variable transformation

 QQQ

 $A\cap B\rightarrow A\cap B\rightarrow A\subseteq B\rightarrow A\subseteq B\rightarrow A\subseteq B$

$$
z(t; t_0) \equiv \frac{\sqrt{t_{bc} - t} - \sqrt{t_{bc} - t_0}}{\sqrt{t_{bc} - t} + \sqrt{t_{bc} - t_0}},
$$
(4)

 t_{bc} is production threshold of lightest states in channel, $BD^{(*)}$, t_0 defined to improve convergence. z is real for $t \leq t_{\rm bc}$ and a pure phase for $t > t_{\rm bc}$.

 QQQ

K ロ ▶ 【 御 ▶ 【 ヨ ▶ 【 ヨ ▶

$$
z(t; t_0) \equiv \frac{\sqrt{t_{bc} - t} - \sqrt{t_{bc} - t_0}}{\sqrt{t_{bc} - t} + \sqrt{t_{bc} - t_0}},
$$
(4)

 t_{bc} is production threshold of lightest states in channel, $BD^{(*)}$, t_0 defined to improve convergence. z is real for $t \leq t_{\rm bc}$ and a pure phase for $t > t_{\rm bc}$.

$$
z(t; t_0) \equiv \frac{\sqrt{t_{bc} - t} - \sqrt{t_{bc} - t_0}}{\sqrt{t_{bc} - t} + \sqrt{t_{bc} - t_0}},
$$
(4)

 \leftarrow

 t_{bc} is production threshold of lightest states in channel, $BD^{(*)}$, t_0 defined to improve convergence. z is real for $t \leq t_{\rm bc}$ and a pure phase for $t > t_{\rm bc}$.

 Ω

$$
z(t; t_0) \equiv \frac{\sqrt{t_{bc} - t} - \sqrt{t_{bc} - t_0}}{\sqrt{t_{bc} - t} + \sqrt{t_{bc} - t_0}},
$$
(4)

 t_{bc} is production threshold of lightest states in channel, $BD^{(*)}$, t_0 defined to improve convergence. z is real for $t \leq t_{\rm bc}$ and a pure phase for $t \geq t_{\rm bc}$.

$$
z(t; t_0) \equiv \frac{\sqrt{t_{bc} - t} - \sqrt{t_{bc} - t_0}}{\sqrt{t_{bc} - t} + \sqrt{t_{bc} - t_0}},
$$
(4)

 t_{bc} is production threshold of lightest states in channel, $BD^{(*)}$, t_0 defined to improve convergence. z is real for $t \leq t_{\rm bc}$ and a pure phase for $t \geq t_{\rm bc}$.

 \overline{m} \rightarrow 4 Ξ \equiv

 $2Q$

 \equiv

$$
\frac{1}{2\pi i} \sum_{i} \oint_C \frac{dz}{z} |\phi_i(z) P_i(z) F_i(z)|^2 \le 1,
$$
\n⁽⁵⁾

 \equiv

 $2QQ$

 $E \rightarrow A E$

 \leftarrow \leftarrow \leftarrow \leftarrow \leftarrow \leftarrow \leftarrow \leftarrow

$$
\frac{1}{2\pi i} \sum_{i} \oint_C \frac{dz}{z} |\phi_i(z) P_i(z) F_i(z)|^2 \le 1,
$$
\n⁽⁵⁾

 \leftarrow \Box

Intuition: Fraction of the W $\Pi(t)$ given by subset, implying 1 is a very conservative bound

 \rightarrow \equiv

 $2QQ$

$$
\frac{1}{2\pi i} \sum_{i} \oint_C \frac{dz}{z} |\phi_i(z) P_i(z) F_i(z)|^2 \le 1,
$$
\n⁽⁵⁾

Intuition: Fraction of the W $\Pi(t)$ given by subset, implying 1 is a very conservative bound

Take an expansion around $z \approx 0$ ($z_{\text{max}} = 0.027$)

$$
F_i(t) = \frac{1}{|P_i(t)|\phi_i(t;t_0)} \sum_{n=0}^{\infty} a_{in} z(t;t_0)^n ,
$$
 (6)

 \leftarrow \Box \rightarrow

 $2QQ$

 $AB \rightarrow AB \rightarrow AB$

$$
\frac{1}{2\pi i} \sum_{i} \oint_C \frac{dz}{z} |\phi_i(z) P_i(z) F_i(z)|^2 \le 1,
$$
\n⁽⁵⁾

Intuition: Fraction of the W $\Pi(t)$ given by subset, implying 1 is a very conservative bound

Take an expansion around $z \approx 0$ ($z_{\text{max}} = 0.027$)

$$
F_i(t) = \frac{1}{|P_i(t)|\phi_i(t;t_0)} \sum_{n=0}^{\infty} a_{in} z(t;t_0)^n ,
$$
 (6)

with the bound now expressed as

$$
\sum_{i;n=0}^{\infty} a_{in}^2 \le 1.
$$
\n⁽⁷⁾

 \leftarrow \Box

 QQQ

 $\left\{ \left\vert \mathbf{a}\right\vert \mathbf{b}\right\} \rightarrow\left\{ \left\vert \mathbf{b}\right\vert \mathbf{c}\right\} \rightarrow\left\{ \left\vert \mathbf{b}\right\vert \mathbf{c}\right\}$

$$
\frac{1}{2\pi i} \sum_{i} \oint_C \frac{dz}{z} |\phi_i(z) P_i(z) F_i(z)|^2 \le 1,
$$
\n⁽⁵⁾

Intuition: Fraction of the W $\Pi(t)$ given by subset, implying 1 is a very conservative bound

Take an expansion around $z \approx 0$ ($z_{\text{max}} = 0.027$)

$$
F_i(t) = \frac{1}{|P_i(t)|\phi_i(t;t_0)} \sum_{n=0}^{\infty} a_{in} z(t;t_0)^n ,
$$
 (6)

with the bound now expressed as

$$
\sum_{i;n=0}^{\infty} a_{in}^2 \le 1.
$$
\n⁽⁷⁾

4 0 8 4

Form factors **cannot** change arbitrarily fast!

 QQ

 $\begin{array}{cccccccccccccc} A & \Box & \Box & \rightarrow & \end{array}$

有

 \equiv

E

 $2QQ$

With dispersive analysis, lattice data, and physical constraints, a bound on the SM $R_{J/\Psi}$ can be made without any recourse to models

 QQQ

- With dispersive analysis, lattice data, and physical constraints, a bound on the SM $R_{J/\Psi}$ can be made without any recourse to models
- Improvement in existing lattice form factors, or any information about the remaining two can substantially shrink bounds

 Ω

- With dispersive analysis, lattice data, and physical constraints, a bound on the SM $R_{J/\Psi}$ can be made without any recourse to models
- Improvement in existing lattice form factors, or any information about the remaining two can substantially shrink bounds
- Including other channels could reduce bounds, since typical $\sum a_n^2 \approx 1$

 QQQ

- With dispersive analysis, lattice data, and physical constraints, a bound on the SM $R_{J/\Psi}$ can be made without any recourse to models
- Improvement in existing lattice form factors, or any information about the remaining two can substantially shrink bounds
- Including other channels could reduce bounds, since typical $\sum a_n^2 \approx 1$

Questions?

 QQQ