

The Beam Dump experiment

Mariangela Bondì for the BDX Collaboration

Possible connection between Hidden sector and SM: "Vector" portal

Consider a theory in which nature contains an additional Abelian gauge symmetry U'(1) B. Holdom, Phys. Lett., B166:196-198, 1986

$$\mathcal{L} = -rac{1}{4}F'_{\mu
u}F'^{\mu
u} + rac{\epsilon}{2}F'_{\mu
u}F_{\mu
u} + rac{m_{A'}^2}{2}A'_{\mu}A'^{\mu} + g_DA'_{\mu}J^{\mu}_{\chi} + eA_{\mu}J^{\mu}_{\mathrm{EM}}$$

This gives rise to a Kinetic Mixing term where the photon mixes with a new gauge boson ("Dark/Heavy Photon" or A') through the interactions of massive fields:

Mixing induces an effective weak coupling se to electric charge

A' acts as a "portal" between the SM and the new sector

e-- Beam Dump experiment

PHYSICAL REVIEW D 88, 114015 (2013)

New electron beam-dump experiments to search for MeV to few-GeV dark matter

Eder Izaguirre, Gordan Krnjaic, Philip Schuster, and Natalia Toro Perimeter Institute for Theoretical Physics, Waterloo, Ontario N2L 2Y5, Canada (Received 9 August 2013; published 3 December 2013)

1 Step: LDM production

- Xs produced via A' emission and invisible decay
 - GeV high intensity e- beam

2 Step: LDM detection

• X scatter off nucleons, nuclei, or electrons in the detector volume, giving rise to a detectable signal.

the eternal fight in physics: signal vs background

4

BDX @ JLAB

Key points:

- High energy beam: 11 GeV
- the Highest available beam current \sim 65 μ A
- Integrated charge: 10²² EOT in ~ 10 months
- •BDX detector located underground, downstream of Hall-A beam-dump
- •BDX beam-time fits the Hall-A experimental program (already-approved experiments with more than 10²² (11 GeV) EOT, e.g. Moeller exp.)
- •New underground experimental hall

BDX detector

LDM signal in the Detector: X-electron -> EM shower ~ GEV

LDM detection Modular EM calorimeter

- •800 CsI(Tl) crystals (from BaBar EMCal)
- •8 modules 10x10 crystals each
- •~ 3 m long, ~ 50x50 cm² front face
- •6x6 mm² SiPM readout

Background rejection

OUTER VETO
Plastic scintillators
LightGuide/WLS scint.
PMTs/SiPM

BDX Prototype

Outer Veto: plastic scint. + Light guide + PMT

Goals:

- 1) validate the proposed design and technical choices
- 2) measure the capability of rejecting cosmic background and project conservatively experimental data to full detector.

Background

Cosmic Background: measured with the BDX prototype in Catania/LNS

Using Vetos in anti-coincidence and high energy thresholds O(0.35GeV):

expected cosmic bg in the BDX lifetime < 2 counts

Beam-related Background:

The interaction of the 11 GeV electron beam in the dump was simulated and the flux of secondaries was studied as a function of the distance from the dump

- ullet No n and γ with E>100 MeV are found at detector location
- we have a rate of beam-related muons (E<300 MeV) on the detector of ~ 0.02 Hz at 65 uA. This background is completely get rid of with veto and shielding.
- Neutrinos survives to the detector -> For a simulated statistics of 3.5×10^9 EOT we obtained, after all rejection cuts and extrapolation to 10^{22} EOT ~ 5 ν .

BDX expected Reach

Beam time request

- 10²² EOT (65 uA for 285 days)
- BDX can run parasitically to any Hall-A Ebeam>10 GeV experiments (e.g Moller)

Beam-related background		Cosmic background	
Eseed thr	N _ν (285 days)	Eseed thr	√ Bg (285 days)
350 MeV	~ 5	350 MeV	<2 counts

BDX sensitivity is 10-100 times better than existing limits on LDM

Inelastic X-N scattering

BDX Status

- Received C2 condition approval by JLAB-PAC44
- PAC45 affirmed our plan to address the concerns raised by PAC44
 - -measuring the muon flux behind the Hall-A dump when 11 GeV ebeam is on with the current shielding configuration
 - compare MC results obtained in two frameworks: Geant4 and FLUKA (in col with RadCon)
- PAC46: request full approval

BDX Muon test

FOME TIME AGO...

- We have measured the flux of high-energy muon behind the hall A beam-dump with the current shielding configuration when 11 GeV e- -beam is on
- The measurements is a benchmark for MC simulation and helping to understand background
- 2 10" pipes downstream of Hall-A beam-dump were drilled down to beam height (8 m) and aligned with the beam-line n 2 different positions B (25 m) and C (28 m)

BDX Muon test: Detector

same technologies proposed in the final experiment

* CRISTAL

- © CsI(Tl) crystal (5x5 x 30 cm²)
- 6x6 mm2 Hamamatsu SiPMs

SCINTILLATORS

- 13 plastic scintillator paddles 1 cm thick
- 3x3 mm2 SIPM coupled via WLS fibers

***** CONTAINER

Oylindrical vessel (d=20cm, h=52cm)

BDX Muon test Expected results: MC simulation

- ◆ Simulation performed using FLUKA/GEANT4 framework
 - generating muons by primary electron interaction on Hall-A beam dump (FLUKA)
 - propagating muons to the pipe positions using GEANT4
 - BDX-HODO response with GEANT4
- ♦ Only muons and low-energy neutrons reach the area of interest
- ◆ Rate from cosmic muons is negligible (and measurable!)

BDX Muon test Expected results: MC simulation

♦ Significant dependence on soil density :

- soil density measured in correspondence of the two wells: 1.93 1.95 q/cm3
- soil density along the muon flight path unknown: constant ??
- concrete density: no measurement available
- Rate well B: $\Delta \rho$ ~ 2.5% -> Δ rate ~ 30%
- Rate Well C $\Delta \rho$ ~ 2.5% -> Δ rate ~ 60%

*****Expected Rate:

- Rate Well B: O(kHz)
- Rate Well C: O(Hz)

BDX Muon test Experimental Campaing

- ★ Positions scan: the muon flux sampled at different heights with respect to nominal beam height (8 m underground).
- Beam: CEBAF e- beam @ 10.6 GeV and current of 22 uA
 - → Well B: 22 positions (ranged between -110 cm and 150 cm). Each measurement was repeated at least 2 times
 - → Well C: 14 positions (ranged between -80 cm and 80 cm). Each measurement was repeated at least 2 times
 - ★ Currents scan: the muon flux sampled at nominal beam height (8 m underground) changing the current.
- Beam: CEBAF e- beam @ 10.6 GeV
 - → Current = 2.2uA, 5uA, 10uA, 22uA
 - → Well1: 1 position (position 0)

★ Cosmic Background

measurement inside well C at beam-line height

BDX Muon test Cosmic Background

Cosmic inside the well

- *Front/Back/crystal coincidence rate is ~ 0.1 Hz -> Negligible
- ★ No significant effect of cosmic muons on rates measured with beam-on

BDX Muon test Experimental Results

- ◆ Scan Position: Muon rate measured in the two wells at different distances from the beam-line height (Z=0)
 - ★Rate well B (Z=0, I=22 uA) ~ 8 KHz
 - ★Rate well C (Z=0, I=22 uA) ~ 15 Hz
 - ★Ratio of the two wells is ~ 500
 - **\starSimilar** bell shape: both distributions are fitted to gaussian with the same width (σ ~ 45 cm)
 - ★The asymmetric shape in the left part of well B distribution could be due to a no constant soil density

Data Well B MC ρ_{soil} [gr/cm³] 1.9÷1.95 60 30 20 -100 50 Vertical pos [cm] 0.6×10⁻¹² Muons/EOT Data Well C MC ρ_{soil} [gr/cm³] 1.9÷1.95 0.2 60 80 Vertical pos [cm]

BDX Muon test DATA/SIM comparison

- ◆ Significant dependence on soil density:

 We assumed following range for density: 1.9 1.95 gr/cm³
 - ★ Data in agreement with the simulation for the assumed density range

Conclusion

- ◆ BDX is a beam dump experiment aimed to investigate the existence of Light Dark Matter (1 MeV 100 MeV)
- ◆The BDX experiment is conditionally approved to run parasitically at Jefferson Lab for 41 weeks at ~11 GeV, which will allow it to collect ~10²² electrons on target.
- ◆ Measurements to assess the BDX beam-on bg proposed to PAC45, endorsed and supported by JLab
- ◆The BDX-Hodo detector (CsI(Tl) + scintillator paddles) lowered in two wells located ~25m and ~28m downstream of the Hall-A beam-dump
- ◆Despite the uncertainty in soil density, simulations reproduce both absolute rates and shape
- ◆Ready to present results to PAC46 seeking for BDX proposal full approval

BDX Collaboration

Thank you for your attention!