

The SDSS / eBOSS survey recent results and prospects

A. Raichoor

(EPFL, anand.raichoor@epfl.ch) on behalf of the eBOSS team

- LSS surveys
- eBOSS results with the 2-years sample
- eBOSS/ELG analysis
- future LSS surveys

CIPANP meeting

Palm Springs, USA — 31 May 2018

Cosmology with LSS surveys

Current state

- observations show
 - ▶ Universe is flat (CMB)
 - ▶ the expansion of the Universe is accelerating
- theoretical framework
 - ► ACDM standard model with ~75% dark energy
 - Modification of the General Relativity on cosmological scales
- cosmological probes
 - ▶ geometry of the Universe : CMB, SNIa, BAO
 - ▶ growth of structures: RSD, WL, galaxy clusters

Large-scale structure surveys

Baryon Acoustic Oscillations

Before z~1100

- baryonic matter and radiation coupled
- oscillations due to radiation pressure
- ▶ acoustic waves propagating

At z~1100

- baryonic matter and radiation decouple
- acoustic waves stop propagating
- distinct imprint: spherical peak at a specific scale, r_s
- CMB \rightarrow $r_s = 150 \text{ Mpc} \sim 105 \text{ Mpc/h}$

After z~1100

- BAO = overdensity of galaxies separated by 105 Mpc/h
- to l.o.s.: $\Delta z = r_s / D_H(z)$, $D_H(z) = c/H(z) \rightarrow \text{expansion rate}$ ▶ parallel
- ▶ perpendicular to l.o.s.: $\Delta \theta = r_s / [(1+z) \times D_A(z)] \rightarrow \text{angular diameter distance}$

Redshift Space Distortions

 \rightarrow elongation

Anisotropic clustering in redshift space

- zobs = Hubble recession + peculiar velocity along line of sight
- ▶ large scales (linear): coherent infall on clusters \rightarrow flattening
- small scales (non-linear): random motion

Constraining cosmology and General Relativity

- $\sigma_8(z)$: amplitude of clustering
- degree of anisotropy depends on the rate of change of $\sigma_8(z)$
- $f \cdot \sigma_8 = \partial \sigma_8 / \partial \ln a$
- General Relativity : $f(z) \sim \Omega_m(z)^{0.55}$

Modelling of the RSD

- constraints on gravity stronger at small scales
- Inear regime (s>80 Mpc/h) modelling well understood
- challenge to model:
 - quasi-linear (30<s<80 Mpc/h)</p>
 - non-linear regimes (s<30 Mpc/h)</p>
- ▶ current 40 < s < 80 Mpc/h</p>
- ▶ some models (CLPT) down to ~25-30 Mpc/h

BAO surveys with the SDSS

SDSS telescope

- ▶ 2.5-meters, New Mexico
- ► 1000 fibers, field of view of 7 deg2
- ~Ih exposure per plate
- ▶ 2005: (co-)first BAO measurement at z~0.3 with ~50k LRGs
- 2008-2014: BOSS, 1.5M spectra over 10k deg2

eBOSS (2014-2019)

- extension of BOSS to 0.6<z<2.2 + new tracer (ELG)</p>
- BAO distance measurement
- test of General Relativity on cosmological scales with RSD
- bonus: constraint on the sum of the neutrino masses

eBOSS tracers	redshift	nb spectra
Luminous Red Galaxies (LRG)	0.6 < z < 1.0	0.25 M
Emission Line Galaxies (ELG)	0.7 < z < 1.1	0.20 M
Quasars (QSO)	0.9 < z < 2.2	0.50 M
Lyα-quasars (Lyα)	2.2 < z < 3.5	0.12 M

SDSS/BOSS survey

BOSS (2008-2014, 1.5M spectra)

- ▶ LOWZ [30 deg⁻²]
- ► CMASS [120 deg⁻²]
- ▶ Lyα [35 deg⁻²]

SDSS/eBOSS survey

eBOSS (2014-2019, IM spectra)

- ▶ LRG [60 deg⁻²]
- ▶ ELG [230 deg⁻²]
- ► QSO+Lyα [140 deg⁻²]

eBOSS results: BAO with QSOs

Data

ISOk QSOs in DRI4 (2-years sample)

Analysis development

- new redshift classification (not visual)
- high-fidelity QSO mock catalogues
- improved weighted schemes to account for redshift failure patterns

First BAO measurement at z~1.5

- QSO properties in agreement with what was expected
- ▶ 4.4% precision on the distance scale
- strong leverage thanks to the sample high-redshift (already improves BOSS galaxy BAO measurement)
- ▶ combining BAO measurements → non-zero Λ preferred at 6.5 σ

Ata et al.2018

eBOSS results: RSD with QSOs

Data

► 150k QSOs in DR14 (2-years sample)

Analysis development

- different weighting techniques
- In the decomposition of BAO and RSD measurements into multiple redshift bins
- Ifferent models of non-linear matter clustering in configuration space
- measurements of RSD in the matter power spectrum

Anisotropic clustering, RSD measurement at z~1.5

- $f \cdot \sigma_{8}$, $H(z) \cdot r_s$, $D_A(z) \cdot r_s$ full shape analysis
- precision: $f \cdot \sigma_8 = 18\%$, $H(z) \cdot r_s = 7.5\%$, $D_A(z) \cdot r_s = 5.5\%$

Gil-marin et al. 2018 Hou et al. 2018 Ruggeri et al.2018 Zarrouk et al. 2018 Zhao et al. 2018a,2018b Zhu et al. 2018

eBOSS results: BAO with LRGs

Data

Bautista et al. 2017 Zhai et al. 2017

▶ 80k LRGs in DR14 (2-years sample)

Analysis development

- optical+NIR target selection
- data reduction improvement (extraction, calibration, redshift fitter)
- new forward-modeling scheme to account for sources of incompleteness

Small/intermediate-scale clustering

- bias measurement / satellite fraction / mean halo mass
- in agreement with what expected

2.6% BAO measurement at z~0.7

eBOSS results: QSO-CIV cross-correlation

Data

- ▶ 30k new Lyαs in DR14 (2-years sample)
- > 290k CIV forest quasars in 1.4<z<3.5, 390k tracer quasars in 1.2<z<3.5

New idea

- \blacktriangleright use CIV forest instead of Ly α forest
- weaker than $Ly\alpha$, but:
 - ► can be used down to z=1.3 (w.r.t. z=2.1 for $Ly\alpha$)
 - high density of quasars at z < 2

Analysis development

- first measurement of QSO-CIV cross-correlation at large scales
- CIV absorption has the potential to be used as a new probe of BAO

Blomqvist et al. 2018

ELG principle

Why ELGs?

- emission lines ($[O_{II}]$ 3727 Å) permits quick zspec measurement
- ▶ abundant at z~0.85
- ▶ key for future BAO surveys (DESI, Euclid, 4MOST)

How to select ELGs at z~0.85?

star-forming

 \rightarrow « blue » cut in (g-r)

Balmer break

- \rightarrow « red » cut in (r-z)
- ▶ $[O_{II}]$ flux correlates with g-mag \rightarrow « bright » cut in g-mag

ELG target selection

DECaLS imaging

- ► DECam @ CTIO/Blanco
- DESI main imaging
- ▶ grz coverage over ~9k deg2
- ► ~2 mag deeper than SDSS imaging

eBOSS/ELG target selection

270k targets over 2 x 600 deg2 (~230/deg2)
g-cut + grz colour-colour cut

ELG observations

Observations

- ▶ 300 plates split between SGC and NGC
- ▶ ~850 ELGs per plate
- observations: started in 2016, Sep. and completed in 2018, Mar.
- on-going analysis

ELG spectra

Spectroscopic redshift measurement

- rather low SN
- SDSS spectroscopic pipeline not optimised for ELGs
- ▶ a posteriori flags quantifying the SN in continuum/emission lines
- visual inspection $\rightarrow \sim 1\%$ catastrophic redshifts

Spectroscopic redshift properties

- ▶ n(z) as expected, peaking at z~0.85
- ▶ ~80% with reliable zspec
- ► ~70% with 0.7<zreliable<1.1</p>

ELG weights

Photometric weights

- account for target density variations with imaging properties
- first use of the DECaLS imaging

Redshift failure weights

- ▶ account for galaxies which were observed but did not succeed in a reliable zspec
- Plate-to-plate variations (zreliable fraction can range from 0.7 to 0.9)
- fiberid dependence

Future LSS surveys

DESI (2020-2025)

- DECaLS + BASS/MzLS imaging
- ▶ 5000 fibers spectrograph at KPNO/Mayall telescope
- ▶ 35M spectra over 14k deg2
- ▶ precise BAO/RSD measurement from z~0.1 to z~3.5

4MOST (2022-2027)

- DES and VHS imaging
- ▶ 2430 fibers spectrograph at VISTA telescope
- ▶ 20M spectra over 12k deg2
- combine with other surveys (lensing, CMB, radio)

Euclid (2021-2028)

- grism spectroscopy with satellite
- 50M spectra over 15k deg2

Conclusions

eBOSS 2 yrs sample

• results in agreement with $\Lambda CDM + GR$ framework

- ► LRG @ z~0.7: 2.6% BAO distance measurement
- ► QSO @ z~1.5: first BAO measurement + RSD measurements

• new BAO tracer with QSO x CIV @ $z\sim1.9$

eBOSS/ELG

full data observed

first cosmological results this summer

eBOSS prospects

- ▶ all data taken by early 2019, public DR and final results by end 2019
- $f \cdot \sigma_{8,} H(z) \cdot r_s$, $D_A(z) \cdot r_s$ with all tracers
- ▶ BAO + RSD with BOSS+eBOSS
- neutrino masses

Future LSS surveys

- ► DESI, 4MOST, Euclid
- eBOSS experience crucial