

van swinderen institute for particle physics and gravity

Rare Decays

Gerco Onderwater on behalf of the LHCb collaboration

CIPANP2018, Palm Springs, CA, USA, 29 May – 3 June 2018

5/29/18 2

Outline

Introduction

- $B_{(s)} \rightarrow \mu \mu$: qFCNC
- B_(s)→TT : LNU
- $B_{(s)} \rightarrow e\mu$: cLFV
- $B^0 \rightarrow \overline{K}^{*0} \mu \mu : q_{13} FCNC$
- $B^0 \rightarrow K^{*0} \mu \mu$: post-BR

Sm Magnet RICH2 MI Vertex Locator

Conclusion

5/29/18 | 3

5/29/18 | 4

Testing SM with rare decays

many processes forbidden at tree level b/c symmetry principle e.g. B, L, L_{ерт}, V-A, LI, CPT, ...

possible via SM loop contributions \rightarrow strongly suppressed \rightarrow rare BSM may contribute \rightarrow large deviation from SM prediction

If deviations observed \rightarrow clear sign of New Physics

Complementary to direct searches

Can probe higher energy ranges through virtual particles

5/29/18 | 5

5/29/18 | 7

Excellent data collection

LHCb Integrated Recorded Luminosity in pp, 2010-2018

5/29/18 | 8

5/29/18 | 9

Golden Channel

Very rare decay, heavily helicity suppressed

within SM only through loops $Br_{SM}(B_S \rightarrow \mu^+ \mu^-) = (3.66 \pm 0.23) \cdot 10^{-9}$ $Br_{SM}(B^0 \rightarrow \mu^+ \mu^-) = (1.06 \pm 0.09) \cdot 10^{-10}$

Previous measurement

LHCb + CMS, 2011 + 2012 data Br(B_s $\rightarrow \mu^{+}\mu^{-}$) = (2.8±0.7)·10⁻⁹ Br(B⁰ $\rightarrow \mu^{+}\mu^{-}$) = (3.9±1.6)·10⁻¹⁰

Complementary measurement of effective lifetime can help disentangle B_s and \overline{B}_s contributions

Gerco Onderwater, CIPANP2018

Theory: doi.org/10.1103/PhysRevLett.112.101801 LHCb + CMS: doi:10.1038/nature14474

5/29/18 | 10

Branching Fractions

Optimization

Better rejection of misidentified b-hadron decays

Improved separation of signal from combinatorial background

Run1 + part Run2 (2015 & 2016) data (4.4 fb⁻¹) $m_{\mu^+\mu^-} \mu^- \mu^- \mu^-$ Br(B_s $\rightarrow \mu^+ \mu^-) = (3.0 \pm 0.7) \cdot 10^{-9}$ 7.8 σ excessBr(B⁰ $\rightarrow \mu^+ \mu^-) = <3.4 \cdot 10^{-10}$ @ 95% C.L.

Results compatible with SM → stringent BSM constraint

5/29/18 | 11

Effective Lifetime

Fit Details

Background-subtracted data Reduced µµ mass window Looser PID requirements for µ's Cut excessively large times

Results

 $T(B_s \rightarrow \mu^+ \mu^-) = 2.04 \pm 0.44 \pm 0.05 \text{ ps}$

Consistent with SM at 1.0σ

Convincing proof-of-principle

5/29/18 | 12

5/29/18 | 13

Gold-plated channel

Less helicity suppressed, Universality test

Br_{SM}(B_S→**T**⁺**T**⁻) = (7.73±0.49)·10⁻⁷ Br_{SM}(B⁰→**T**⁺**T**⁻) = (2.22±0.19)·10⁻⁸

BSM explaining latest LNU → enhance orders of magnitude

Previous measurements

 $Br(B_{S} \rightarrow \mathbf{T}^{+}\mathbf{T}^{-}) < 3 \cdot 10^{-2}$ $Br(B^{0} \rightarrow \mathbf{T}^{+}\mathbf{T}^{-}) < 4 \cdot 10^{-3}$

Indirect @ 90% C.L. Babar @ 90% C.L.

Tau reconstruction $\Gamma^{\Pi^{+}\Pi^{-}}$ use $\mathbf{T}^{-} \rightarrow \Pi^{-}\Pi^{+}\Pi^{-}V_{\mathbf{T}}$ via $\mathbf{T}^{-} \rightarrow a_{1}^{-}V_{\mathbf{T}}$ final state neutrinos \rightarrow cannot use $m_{\mathbf{T}}$ to distinguish $B_{s} \& B^{0}$

Gerco Onderwater, CIPANP2018

Theory: doi.org/10.1103/PhysRevLett.112.101801 Babar: doi.org/10.1103/PhysRevLett.96.241802 Bs result: doi.org/10.1103/PhysRevD.82.031502

 $m_{\pi^+\pi^-}$ [MeV/c²] 1500

800

600

400

LHCb simulation

Decays

20

15

10

5/29/18 14

Signal Extraction

Exploit $\rho(770)^{\circ}$ resonance Signal : both **T**'s in "5" Signal-depleted : $\geq 1\mathbf{T}$ in "1,3,7,9" : 1**T** in "4,5,8", 1**T** in "4,8" Control

Fit to Neural Network

200∟ 200 400 600 800 1000 1200 $m_{\pi^+\pi^-}$ [MeV/ c^2] Run1 data (3 fb^{-1}) Br(B_S→ $\mathbf{T}^+\mathbf{T}^-$) < 6.8·10⁻³ @ 95% C.L. (first direct limit) Br(B⁰→ $\mathbf{T}^+\mathbf{T}^-$) < 2.1·10⁻³ @ 95% C.L. (world's best limit) Still far from SM prediction

5/29/18 | 15

5/29/18 | 16

Lepton-Flavour Violating decay

Forbidden in SM \rightarrow sensitive to new physics

allowed through neutrino mixing $Br_{SM}(B_S \rightarrow e\mu) = O(10^{-huge})$ large LFV expected in numerous BSM scenarios (SUSY, LQ, ...)

Previous measurements: LHCb 1 fb⁻¹

Br(B_s→eµ) < $1.4 \cdot 10^{-8}$ @ 95% C.L. Br(B⁰→eµ) < $3.7 \cdot 10^{-9}$ @ 95% C.L.

Improvements

larger data sample improved selection (multivariate classifier) improved treatment of Bremsstrahlung

Gerco Onderwater, CIPANP2018

BSM: doi.org/10.1103/PhysRevD.92.054013 BSM: doi.org/10.1103/PhysRevD.94.115021 BSM: doi.org/10.1007/JHEP06(2015)072 LHCb:doi.org/10.1103/PhysRevLett.111.141801

Signal Extraction

Unbinned maximum likelihood fit to the m_{eµ} distributions

7 bins in BDT response **signal**: simulated $B_s \rightarrow e\mu$ **background**: data with $e\mu$

Run1 data (3 fb⁻¹, @ 95% C.L.) Br(B⁰→eµ) < $1.3 \cdot 10^{-9}$ Br(B_s→eµ) < $6.3 \cdot 10^{-9}$

Strongest limit on these decays consistent with background-only

5/29/18 | 18

$B_s^0 \rightarrow K^{*0} \mu \mu$

5/29/18 | 19

Search for new channel

b → **d** Flavor-Changing Neutral Current

Br_{SM}(B_s→ $\overline{K}^{*0}\mu\mu$)~O(10⁻⁸) (CKM suppressed) complementary to B⁰→ $K^{*0}\mu\mu$ can be used to calculate $|V_{td}/V_{ts}|$

never observed

Unbinned maximum likelihood fit to m(K⁻π⁺μ⁺μ⁻) m(K⁻π⁺) within ±70 MeV/c² of $\overline{K}^*(892)^0$ Use 0.1 < q²=m²_{µµ} < 19 GeV²/c⁴ 12.5 < q² < 15.0 GeV²/c⁴ excluded, Ψ(2S) 8.0 < q² < 11.0 GeV²/c⁴ treated separately, J/Ψ

Gerco Onderwater, CIPANP2018

arXiv:1804.07167

5/29/18 | 20

Signal Extraction

Run1 + part Run2 (2015 + 2016) data (4.6 fb⁻¹)

N(B_s→
$$\overline{K}^{*0}\mu\mu$$
) = 38±12 3.4 σ above background (first evidence)

Br(B_s→ $\overline{K}^{*0}\mu\mu$) = [2.9±1.0(stat)±0.2(sys)±0.3(norm)]·10⁻⁸ (first measurement)

Gerco Onderwater, CIPANP2018

arXiv:1804.07167

5/29/18 | 21

$B^{0} \rightarrow K^{*0} \mu \mu$

5/29/18 | 22

Enhancing sensitivity

b → **s** Flavor-Changing Neutral Current

move beyond branching fractions \rightarrow angular distribution angular observables: less affected by hadronic uncertainties than branching fraction measurements

Previous measurements

by LHCb, Babar, Belle, CDF, CMS $K^*(892)^0 \rightarrow K^+\pi^$ final state characterized by $(\theta_{\ell}, \theta_{\kappa}, \phi), m(K^+\pi^-), q^2(m^2_{\mu\mu})$

Gerco Onderwater, CIPANP2018

LHCb : doi.org/10.1103/PhysRevLett.111.191801 Babar : doi.org/10.1103/PhysRevD.73.092001 Belle : doi.org/10.1103/PhysRevLett.103.171801 CDF : doi.org/10.1103/PhysRevLett.108.081807 CMS : doi.org/10.1016/j.physletb.2013.10.017

5/29/18 23

Signal Extraction $\frac{1}{d\Gamma/dq^2} \frac{d^4\Gamma}{d\cos\theta_k d\cos\theta_K d\phi dq^2} = \frac{9}{32\pi} \left[\frac{3}{4} (1 - F_L) \sin^2\theta_K + F_L \cos^2\theta_K + \frac{1}{4} (1 - F_L) \sin^2\theta_K \cos 2\theta_\ell \right]$

Use of optimized observables

reduce theoretical uncertainties $P_5' = S_5 / \sqrt{(F_L(1-F_L))}$

Tension with SM prediction

obvious in two q² bins of P₅' combined P_i^(') significance 3.4 σ

- **BSM** physics?
- QCD uncertainty?

Consistent with other data

 $-F_{\rm L}\cos^2\theta_K\cos 2\theta_\ell + S_3\sin^2\theta_K\sin^2\theta_\ell\cos 2\phi$

 $+ S_4 \sin 2\theta_K \sin 2\theta_\ell \cos \phi + S_5 \sin 2\theta_K \sin \theta_\ell \cos \phi$

Gerco Onderwater, CIPANP2018

doi.org/10.1007/JHEP02(2016)104 arXiv:1805.05399

 q^{2} [GeV²/c⁴]

24 | 26

Conclusion

25 | 26

Take away message

A lot of activity in rare decays @ LHCb

- $B_s \rightarrow \mu^+ \mu^-$: first observation in single experiment + first measurement of effective lifetime
- Improved upper limits for $\mathbf{B}_{(s)} \rightarrow \mathbf{T}^+ \mathbf{T}^-$ and $\mathbf{B}_{(s)} \rightarrow \mathbf{e} \mu$
- First evidence of $\mathbf{B}_{s} \rightarrow \mathbf{\overline{K}} *^{0} \mu^{+} \mu^{-}$
- $B^0 \rightarrow K^{*0}\mu^+\mu^-$: tension with SM persists
- Many more results: FCNC, LFV, BNV, LNV, qqqqq, γ_{dark} , v_{heavy} , ...

Important constraints on New Physics

Thank you for your attention!

