How a Future Lepton Collider Indirectly Probe Neutralino DM?

Ran Huo

CIPANP 2018

June 2, 2018

・ロト ・回ト ・ヨト ・ヨ

Based on arxiv:1712.07825, Huayong Han, RH, Minyuan Jiang, Jing Shu.

- Standard Model (SM) Effective Field Theory (EFT)
- One-Loop Diagram Integration out: Covariant Derivative Expansion (CDE) Technique, development till we can calculate the electroweakino sector.
- New MSSM electroweakino sector results
- Numerics

イロト イ団ト イヨト イヨト

See Sally's and Chris' talk.

- Dimension-5 operators = "Seesaw" operator for neutrino. Irrelevant.
- Effectively the start: Dimension-6 operators = 59 baryon number conserved +5 baryon number violating (for one generation).
- Operator classification
 - Pure Gauge Boson: $\mathcal{O}_{3G}, \mathcal{O}_{3W}$ and their CP-odd counterparts, $\mathcal{O}_{2G}, \mathcal{O}_{2W}, \mathcal{O}_{2B}$
 - Pure Higgs: 6 Higgs \mathcal{O}_6 , 4 Higgs 2 derivatives $\mathcal{O}_H, \mathcal{O}_T, \mathcal{O}_R$, 2 Higgs 4 derivative \mathcal{O}_D
 - Gauge Boson + Higgs: $\mathcal{O}_{GG}, \mathcal{O}_{WW}, \mathcal{O}_{BB}, \mathcal{O}_{WB}$ and CP-odd counterparts, $\mathcal{O}_{HW}, \mathcal{O}_{HB}, \mathcal{O}_{W}, \mathcal{O}_{B}$
 - Pure Fermionic
 - Higgs + Fermionic
 - Gauge Boson + Fermionic
 - gauge Boson + Higgs + Fermionic

CDE can calculate the first three classes, pure bosonic ones.

 $\mathsf{Model} \leftrightarrow \mathsf{Operators}.$

<ロト <回ト < 回ト < 回ト

Unable to calculate the tree-level integrating out, as well as their RGE running contribution. But models with such contribution are limited and can be enumerated.

Level:

- Coleman-Weinberg Potential
- Derivative Expansion of Spacetime Dependent Field
- Covariant Generalization for Derivatives
- Fermionic γ Matrices
- Nondegenerated Large Suppression Masses
- Chiral and Majorana Fermions Mixing

< □ > < 同 > < 回 > < Ξ > < Ξ

• Coleman-Weinberg potential is in momentum representation

$$iV_{1L} = rac{n_{\mathsf{B}/\mathsf{F}}}{2} \int rac{d^4p}{(2\pi)^4} \ln(p^2 - V^{\prime\prime}).$$

But quantum mechanics is more frequently using position representation. For spacetime independent field such as the Higgs VEV there is no difference for the two representations, but not for the case if V'' has spacetime dependence.

• From Chan, PRL 54 1222, one cae take the In inside the Coleman-Weinberg potential to be actually

$$\int \frac{d^d p}{(2\pi)^d} e^{-ipx} \ln\left(p^2 - V^{\prime\prime}(x)\right) e^{ipy} = \int \frac{d^d p}{(2\pi)^d} \ln\left(p^2 - V^{\prime\prime}(x - i\frac{\partial}{\partial p})\right) e^{-ip(x-y)}$$

Consistent with Fourier transformation $\int \frac{d^d p}{(2\pi)^d} e^{-ipx} = \delta(x)$ which gives Green function.

• Spacetime dependent V''(x) does not commute with p, so after Taylor expansion

$$V^{\prime\prime}(x-i\frac{\partial}{\partial p}) = M^2 + \delta V^{\prime\prime}(x) + \sum_{n=1}^{\infty} \frac{(-i)^n}{n!} \partial_{\mu_1} \cdots \partial_{\mu_n} \delta V^{\prime\prime}(x) \frac{\partial}{\partial p}{}^{\mu_1} \cdots \frac{\partial}{\partial p}{}^{\mu_n}$$

which makes key difference.

イロト イヨト イヨト イヨト

Regularization for $-i\frac{\partial}{\partial p}$ Orders

What is the order for the $-i\frac{\partial}{\partial p}s$ in In to find the *p*s to act on?

$$(A-B)^{-1} = A^{-1} + A^{-1}BA^{-1} + A^{-1}BA^{-1}BA^{-1} + \cdots$$

Let $A = p^2 - M^2$, $B = \delta V''(x) + \sum_{n=1}^{\infty} \frac{(-i)^n}{n!} \partial_{\mu_1} \cdots \partial_{\mu_n} \delta V''(x) \frac{\partial}{\partial p} \partial_{\mu_1} \cdots \partial_{\mu_n} \delta V''(x)$, then $-i \frac{\partial}{\partial p} s$ have unambiguous orders to the ps.

There are two popular ways (regularizations) to reach $\left(p^2 - M^2 - \delta V''(x - i \frac{\partial}{\partial p})\right)^{-1}$ from In

• With dimension-2 parameter u, at last drop $u
ightarrow \infty$ terms

$$2iV_{1L} = n_{\mathsf{B}/\mathsf{F}} \int_{0}^{\infty} -du \int \frac{d^{d}p}{(2\pi)^{d}} \frac{d}{du} \ln(p^{2} - M^{2} - \delta V^{\prime\prime}(x - i\frac{\partial}{\partial p}) - u)$$

$$= n_{\mathsf{B}/\mathsf{F}} \int \frac{d^{d}p}{(2\pi)^{d}} \int_{0}^{\infty} du \left(p^{2} - M^{2} - \delta V^{\prime\prime}(x - i\frac{\partial}{\partial p}) - u\right)^{-1} = n_{\mathsf{B}/\mathsf{F}} \int \frac{d^{d}p}{(2\pi)^{d}} \ln\left(p^{2} - M^{2} - \delta V^{\prime\prime\prime}(x)\right)$$

$$+ n_{\mathsf{B}/\mathsf{F}} \int_{0}^{\infty} du \int \frac{d^{d}p}{(2\pi)^{d}} \sum_{n=1}^{\infty} \left(\frac{1}{p^{2} - M^{2} - u} \left[\delta V^{\prime\prime} + \sum_{n=1}^{\infty} \frac{(-i)^{n}}{n!} \partial_{\mu_{1}} \cdots \partial_{\mu_{n}} \delta V^{\prime\prime} \frac{\partial}{\partial p}^{\mu_{1}} \cdots \frac{\partial}{\partial p}^{\mu_{n}}\right]\right)^{n} \frac{1}{p^{2} - M^{2} - u}$$

• With dimensionless ξ parameter, at last drop $\xi \to \infty$ terms

$$2iV_{1L} = n_{\mathsf{B}/\mathsf{F}} \int_{1}^{\infty} d\xi \int \frac{d^d p}{(2\pi)^d} \frac{d}{d\xi} \ln(p^2 - \xi M^2 - \delta V''(x - i\frac{\partial}{\partial p}))$$

We have checked that the two regularizations give the same results, but they can differ in intermediate steps.

イロト イポト イヨト イヨト 二百

- Mechanical momentum to canonical momentum $p^2 V'' \rightarrow (p + gA)^2 V'' (p + gA(x i\frac{\partial}{\partial p}))^2 V''(x i\frac{\partial}{\partial p})$
- Multiplying $e^{-iD\frac{\partial}{\partial p}}e^{i\frac{\partial}{\partial p}\partial}$ on the left and its inverse on the right is invariant.

$$e^{-iD\frac{\partial}{\partial p}}e^{i\frac{\partial}{\partial p}\partial}\left(\left(p+gA(x-i\frac{\partial}{\partial p})\right)^{2}-V^{\prime\prime}(x-i\frac{\partial}{\partial p})\right)e^{-i\frac{\partial}{\partial p}\partial}e^{iD\frac{\partial}{\partial p}}=e^{-iD\frac{\partial}{\partial p}}\left(\left(p+i\partial+gA(x)\right)^{2}-V^{\prime\prime}(x)\right)e^{iD\frac{\partial}{\partial p}}e^{iD\frac{\partial}{\partial p}}e^{iD\frac{$$

$$\begin{split} \delta \tilde{V}^{\prime\prime} &= e^{-iD\frac{\partial}{\partial p}} V^{\prime\prime}(x) e^{iD\frac{\partial}{\partial p}} = M^2 + \delta V^{\prime\prime}(x) + \sum_{n=1}^{\infty} \frac{(-i)^n}{n!} D_{\mu_1} \cdots D_{\mu_n} \delta V^{\prime\prime}(x) \quad \frac{\partial}{\partial p}^{\mu_1} \cdots \frac{\partial}{\partial p}^{\mu_n} \\ \tilde{G} &= e^{-iD\frac{\partial}{\partial p}} \left(p_{\mu} + iD_{\mu} \right)^2 e^{iD\frac{\partial}{\partial p}} = \left(\sum_{n=0}^{\infty} \frac{1}{n!} [-iD\frac{\partial}{\partial p}, [-iD\frac{\partial}{\partial p}, [\cdots [-iD\frac{\partial}{\partial p}, p + iD] \cdots]]] \right)^2 \end{split}$$

Several useful terms

$$\tilde{G} = g p^{\mu} t^{a} \left(i F^{a}_{\nu\mu} \frac{\partial}{\partial p}^{\nu} + \frac{4}{3!} D_{\rho} F^{a}_{\nu\mu} \frac{\partial}{\partial p}^{\rho} \frac{\partial}{\partial p}^{\nu} + \cdots \right) + g t^{a} \left(\frac{2}{3!} D^{\mu} F^{a}_{\nu\mu} \frac{\partial}{\partial p}^{\nu} + \cdots \right) + g^{2} t^{a} t^{b} \left(\frac{1}{4} F^{a}_{\nu\mu} F^{b\rho\mu} \frac{\partial}{\partial p}^{\nu} \frac{\partial}{\partial p}^{\rho} + \cdots \right)$$

イロト イヨト イヨト イヨト

• Fermionic CW potential

$$V_{\rm CW} \propto \frac{in_F}{2} \int \frac{d^4 p}{(2\pi)^4} \ln(\not\!\!\! p - V_F^{\prime\prime}) \rightarrow \frac{in_F}{4} \int \frac{d^4 p}{(2\pi)^4} \ln(\not\!\!\! p - M - \delta V_F^{\prime\prime}) + \ln(\not\!\!\! p + M + \delta V_F^{\prime\prime})$$

• The bosonic correspondence

$$\delta V^{\prime\prime} = \{M, \delta V_F^{\prime\prime}\} + (\delta V_F^{\prime\prime})^2$$

• γ matrices

$$e^{-iD\frac{\partial}{\partial p}}\left((\not p+i\not D)(\not p+i\not D)+(\not p+i\not D)(M+\delta V_F'')-(M+\delta V_F'')(\not p+i\not D)-(M+\delta V_F'')^2\right)e^{iD\frac{\partial}{\partial p}}$$

Even number of γ matrices contribute.

 $\bullet~\gamma$ matrices induced pure Fermionic terms

$$\begin{split} \pm \tilde{\Gamma}_{1} &= i \not{\!\partial} \delta V_{F}^{\prime\prime} + \frac{1}{2} (\not{\!\partial} D_{\mu} + D_{\mu} \not{\!\partial}) \delta V_{F}^{\prime\prime} \frac{\partial}{\partial p}^{\mu} - \frac{i}{6} (\not{\!\partial} D_{\mu} D_{\nu} + D_{\mu} \not{\!\partial} D_{\nu} + D_{\mu} D_{\nu} \not{\!\partial}) \delta V_{F}^{\prime\prime} \frac{\partial}{\partial p}^{\mu} \frac{\partial}{\partial p}^{\nu} + \cdots \\ &+ \frac{i}{2} g \gamma^{\mu} [\delta V_{F}^{\prime\prime}, F_{\nu\mu}^{a} t^{a}] \frac{\partial}{\partial p}^{\nu} + \frac{1}{2} g \gamma^{\mu} [D_{\rho} \delta V_{F}^{\prime\prime}, F_{\nu\mu}^{a} t^{a}] \frac{\partial}{\partial p}^{\nu} \frac{\partial}{\partial p}^{\rho} + \frac{2}{3!} g \gamma^{\mu} [\delta V_{F}^{\prime\prime}, D_{\rho} F_{\nu\mu}^{a} t^{a}] \frac{\partial}{\partial p}^{\nu} \frac{\partial}{\partial p}^{\rho} + \cdots \\ \tilde{\Gamma}_{2} &= -\frac{i}{4} g [\gamma^{\mu}, \gamma^{\nu}] F_{\mu\nu}^{a} t^{a} + \cdots \end{split}$$

$$\mathcal{L}_{\text{CDE}} = \frac{n_{\text{B/F}}}{2} \int_{0}^{\infty} du \int \frac{d^{d} p_{\text{E}}}{(2\pi)^{d}} \sum_{m=1}^{\infty} (-1)^{m} \text{tr} \left[\left(\frac{1}{p_{\text{E}}^{2} + M^{2} + u} \left[\delta \tilde{V}^{\prime \prime} + \tilde{G} + \tilde{\Gamma}_{1} + \tilde{\Gamma}_{2} \right] \right)^{m} \frac{1}{p_{\text{E}}^{2} + M^{2} + u} \right]$$

Nondegenerated Large Suppression Masses

- δ V
 ^{''} + G
 ['] + Γ
 [']
- $\frac{1}{p_E^2+M^2}$ should be viewed as matrix $(p_E^2\mathbf{1} + (M^2)_{ii})^{-1}$, the diagonal spacetime independent $(M^2)_{ii}$ s may correspond to different new particles and adopt different values.
- The terms contributing to dimension-6 operators are actually calculating

$$\begin{array}{ll} \displaystyle \frac{1}{\prod_{\sum n_i=4}(p_E^2+M_i^2+u)^{n_i}}, & \displaystyle \frac{p_E^2}{\prod_{\sum n_i=5}(p_E^2+M_i^2+u)^{n_i}}, \\ \\ \displaystyle \frac{X_iX_j}{\prod_{\sum n_i=5}(p_E^2+M_i^2+u)^{n_i}}, & \displaystyle \frac{p_E^2X_iX_j}{\prod_{\sum n_i=6}(p_E^2+M_i^2+u)^{n_i}}, & \displaystyle \frac{p_E^4X_iX_j}{\prod_{\sum n_i=7}(p_E^2+M_i^2+u)^{n_i}}, \\ \\ \displaystyle \frac{X_iX_jX_kX_i}{\prod_{\sum n_i=6}(p_E^2+M_i^2+u)^{n_i}}, & \displaystyle \frac{p_E^2X_iX_jX_kX_i}{\prod_{\sum n_i=7}(p_E^2+M_i^2+u)^{n_i}}, \\ \\ \displaystyle \frac{X_iX_jX_kX_iX_mX_n}{\prod_{\sum n_i=7}(p_E^2+M_i^2+u)^{n_i}}. \end{array}$$

There is similar form for ξ regularization.

• Repeated usage of Feynman parameterization.

イロト イヨト イヨト イヨト

The job is to find the correct input matrix.

We use Van der Waerden spinor notation $\chi = \begin{pmatrix} \chi_{\alpha} \\ \chi^{\dagger \dot{\alpha}} \end{pmatrix}$

- Both for gaugino/Majorana spinors and for higgsino/chiral spinors, in pure kinetic terms one can flip chiralities since $\xi^{\dagger}i\bar{\sigma}^{\mu}\partial_{\mu}\chi = \chi i\sigma^{\mu}\partial_{\mu}\xi^{\dagger}$
- For Non-Abelian gauge group, such chiralities flip induces a transpose of gauge field associated to the fundamental representation. $g\psi_i^{\dagger}\bar{\sigma}^{\mu}\psi_jA^a_{\mu}t^a_{ij} = -g\psi_j\sigma^{\mu}\psi_i^{\dagger}A^a_{\mu}t^a_{ij}$
- But it will be invariant under the rising and lowing operator basis, or the basis which respect electric charge. Then the 4 component spinors should be packaged as

$$\begin{split} \chi^{B} &= \left(\begin{array}{c} \widetilde{B} \\ \widetilde{B}^{\dagger} \end{array}\right), \ \chi^{1} = \left(\begin{array}{c} \widetilde{W}^{1} \\ \widetilde{W}^{1\dagger} \end{array}\right), \ \chi^{2} = \left(\begin{array}{c} \widetilde{W}^{2} \\ \widetilde{W}^{2\dagger} \end{array}\right), \ \chi^{3} = \left(\begin{array}{c} \widetilde{W}^{3} \\ \widetilde{W}^{3\dagger} \end{array}\right), \\ \chi^{+} &= \left(\begin{array}{c} \widetilde{H}^{+} \\ \widetilde{H}^{+} \\ \widetilde{H}^{+} \\ \end{array}\right), \ \chi^{0} = \left(\begin{array}{c} \widetilde{H}^{0} \\ \widetilde{H}^{0} \\ \widetilde{H}^{0} \\ \end{array}\right), \ \chi^{0*} = \left(\begin{array}{c} \widetilde{H}^{0*} \\ \widetilde{H}^{0*} \\ \widetilde{H}^{0*} \\ \end{array}\right), \ \chi^{-} = \left(\begin{array}{c} \widetilde{H}^{-} \\ \widetilde{H}^{-} \\ \widetilde{H}^{-} \\ \end{array}\right). \end{split}$$

$$\bullet \ \chi = (\chi^{B}, \ \chi^{1}, \ \chi^{2}, \ \chi^{3}, \ \chi^{+}, \chi^{0}, \ \chi^{0*}, -\chi^{-})^{T} \end{split}$$

イロン イ部ン イヨン イヨ

Chiral and Majorana Fermions Mixing Representation 2

With Dirac type kinetic and mass matrix, then the input to CDE is

Full Analytical Results 1

$$\begin{split} & \text{cov} &= \frac{q^2 \left(2 + 2 \right)}{238 r^2 r^2 r^2}, \\ & \text{c}_B &= \frac{g^2}{138 r^2 r^2}, \\ & \text{c}_B &= \frac{g^2}{138 r^2 r^2}, \\ & \text{c}_W &= -\frac{g^2 \left(2 + 2 \right)}{138 r^2 r^2 r^2}, \\ & \text{c}_W &= -\frac{g^2 \left(2 + 2 \right)}{r^2}, \\ & \text{c}_W &= \frac{g^2 \left\{ - \left(2 \left(2 r^4 + 5 r^2 - 1 \right) r_1 s_{B^2} + 13 r^4 - 2 r^2 + 1 \right)}{133 r^2 (r^2 - 1) r^2 r^2}, \\ & \text{c}_W &= g^2 \left\{ - \left(\frac{2 \left(2 r^4 + 5 r^2 - 1 \right) r_1 s_{B^2} + 13 r^4 - 2 r^2 + 1 \right)}{133 r^2 (r^2 - 1) r^2 r^2}, \\ & \text{c}_W &= g^2 \left\{ - \frac{\left(2 \left(2 r^4 + 5 r^2 - 1 \right) r_1 s_{B^2} + 13 r^2 - 2 r^2 + 1 \right)}{133 r^2 (r^2 - 1) r^2 r^2}, \\ & \text{c}_H &= g^2 \left\{ - \frac{\left(2 \left(2 r^4 + 5 r^2 - 1 \right) r_1 s_{B^2} + 13 r^2 - 2 r^2 + 1 \right)}{133 r^2 (r^2 - 1) r^2 r^2}, \\ & \text{c}_H &= g^2 \left\{ - \frac{\left(2 \left(2 r^4 + 5 r^2 - 1 \right) r_1 s_{B^2} + 13 r^2 - 2 r^2 + 1 \right)}{133 r^2 (r^2 - 1) r^2 r^2}, \\ & \text{c}_H &= g^2 \left\{ - \frac{\left(2 \left(2 r^4 + 5 r^2 - 1 \right) r_1 s_{B^2} + 13 r^2 - 2 r^2 + 1 \right)}{132 r^2 (r^2 - 1) r^2 r^2}, \\ & \text{c}_H &= g^2 \left\{ - \frac{\left(2 \left(2 r^4 + 5 r^2 - 1 \right) r_1 s_{B^2} + 13 r^2 - 2 r^2 + 1 \right)}{132 r^2 (r^2 - 1) r^2 r^2}, \\ & \text{c}_H &= g^2 \left\{ \frac{\left(4 r^2 - 1 r^2 - 2 r^2 + 1 r^2 + 1 r^2 - 2 r^2 + 1 \right)}{112 r^2 (r^2 - 1) r^2 r^2}, \\ & \text{c}_H &= g^2 \left\{ \frac{\left(4 r^2 - 1 r^2 - 2 r^2 + 1 r^2 + 1 r^2 - 2 r^2 + 1 r^2 + 1 r^2 - 2 r^2 + 1 r^2 +$$

$$r_1 = \frac{M_1}{\mu},$$

$$r_2 = \frac{M_2}{\mu},$$

$$s_{2\beta} = \sin(2\beta),$$

$$c_{4\beta} = \cos(4\beta).$$

≣ ∽ ۹. ભ June 2, 2018 12 / 22

Electroweakino CDE

Full Analytical Results 2

C _H	$r = g^{\prime 4} \left\{ \frac{1}{1536 \pi^2 (r_t^2 - 1)^4 \mu^2} [(2r_1^6 - 45r_1^4 - 126r_1^2 + 25)c_{4\beta} + 12(r_1^4 + 52r_1^2 - 5)r_1s_{2\beta} - 28r_1^6 + 309r_1^4 + 192r_1^2 - 41] \right\}$	
	$+ \frac{\log[\frac{M_{21}^2}{2}]}{256r^2(r_{-1}^2 - 15r_{0}^2)} [(r_{1}^6 + 19r_{1}^4 + 6r_{1}^2 - 2)c_{4\theta} + 4(r_{1}^6 - 15r_{1}^4 - 12r_{1}^2 + 2)r_{1}s_{2\theta} + 2r_{1}^8 - 15r_{1}^6 - 59r_{1}^4 - 2r_{1}^2 + 2]$	
	$ + g^2 g^2 \int \frac{1}{256 a^2 (r_1^2 - 1)^2 (r_1 - r_2) (r_1 + r_2) x^2} [-8(r_1 + r_2)(r_1^2 - 5)r_1 s_{2\beta} + (r_1^2 + 2r_2 r_1^2 - 4r_1^2 - 2r_2 r_1^2 - 7r_1 - 6r_2) c_{4\beta} $	
	$-7r_1^5 - 6r_2r_1^4 + 20r_1^3 + 22r_2r_1^2 + 9r_1 + 10r_2$	
	$+\frac{\log[\frac{1}{p^2}]r_2^5}{256\pi^2(r_2^2-1)^8(r_1-r_2)(r_1+r_2)\mu^2}[8(r_1+r_2)(r_2^2-5)r_2s_{2\theta}+(r_1^5+2r_2r_1^4-4r_1^3-2r_2r_1^2-7r_1-6r_2)c_{4\theta}$	
	$+7r_2^5+6r_1r_2^4-20r_2^3-22r_1r_2^2-9r_2-10r_1$	
	$+\frac{1}{768\pi^2(r_1^2-1)^3(r_2^2-1)^3\mu^2}[c_{4\beta}(3(4r_2^4-9r_2^2-1)r_2r_1^4+(-16r_2^4-19r_2^2+5)r_1^4+3(-9r_2^4+14r_2^2+7)r_2r_1^3+(-16r_2^4-19r_2^2+5)r_1^4+3(-9r_2^4+14r_2^2+7)r_2r_1^3+(-16r_2^4-19r_2^2+5)r_1^4+3(-9r_2^4-14r_2^2+7)r_2r_1^3+(-16r_2^4-19r_2^2+5)r_1^4+3(-9r_2^4-14r_2^2+7)r_2r_1^3+(-16r_2^4-19r_2^2+5)r_1^4+3(-9r_2^4-14r_2^2+7)r_2r_1^3+(-16r_2^4-19r_2^2+5)r_1^4+3(-9r_2^4-14r_2^2+7)r_2r_1^3+(-16r_2^4-19r_2^2+5)r_1^4+3(-9r_2^4-14r_2^2+7)r_2r_1^3+(-16r_2^4-19r_2^2+5)r_1^4+3(-9r_2^4-14r_2^2+7)r_2r_1^3+(-16r_2^4-14r_2^2+7)r_2r_1^3+(-16r_2^4-14r_2^2+7)r_2r_1^3+(-16r_2^4-14r_2^2+7)r_2r_1^3+(-16r_2^4-14r_2^2+7)r_2r_1^3+(-16r_2^4-14r_2^2+7)r_2r_1^3+(-16r_2^4-14r_2^2+7)r_2r_1^3+(-16r_2^4-14r_2^2+7)r_2r_1^3+(-16r_2^4-14r_2^2+7)r_2r_2^3+(-16r_2^4-14r_2^2+7)r_2r_2^3+(-16r_2^4-14r_2^2+7)r_2r_2^3+(-16r_2^4-14r_2^2+7)r_2r_2^3+(-16r_2^4-14r_2^2+7)r_2r_2^3+(-16r_2^4-14r_2^2+7)r_2r_2^3+(-16r_2^4-14r_2^2+7)r_2r_2^3+(-16r_2^4-14r_2^2+7)r_2r_2^3+(-16r_2^4-14r_2^2+7)r_2r_2^3+(-16r_2^4-14r_2^2+7)r_2r_2^3+(-16r_2^2-14r_2^2-14r_2^2+7)r_2r_2^3+(-16r_2^2-14r_2^2-14r_2^2-14r_2^2+7)r_2r_2^3+(-16r_2^2-14r_2^2-14r_2^2-14r_2^2+7)r_2r_2^3+(-16r_2^2-14r_2^2-1$	
	+ $(-19r_2^4 + 110r_2^2 - 31)r_1^2 - 3r_2(r_2^4 - 7r_2^2 + 12)r_1 + 5r_2^4 - 31r_2^2 - 4) - 4s_{2p}((r_2^4 - 32r_2^2 + 7)r_1^4 + (r_2^4 - 32r_2^2 + 7)r_2r_1^4 - 4(8r_2^4 - 25r_2^2 + 5)r_1^3 - 4r_2(8r_2^4 - 25r_2^2 + 5)r_1^2 + (7r_2^4 - 20r_2^2 - 11)r_1 + (7r_2^4 - 20r_2^2 - 11)r_2)$	с
	$+ (-16r_2^5 + {101}r_2^3 - 7r_2)r_1^5 + (28r_2^4 + 61r_2^2 - 23)r_1^4 + ({101}r_2^4 - 262r_2^2 + 5)r_2r_1^3 + (61r_2^4 - 290r_2^2 + 97)r_1^2 + (61r_2^4 - 290r_2^4 + 97)r_1^2 + (61r_2^4 - 97)r_1^2 + (61r_2^4 $	
	$+(-7r_2^5+5r_2^3+80r_2)r_1-23r_2^4+97r_2^2-8]$	
	$+g^4 \bigg\{ \frac{1}{1536\pi^2(r_2^2-1)^4\mu^2} [(30r_2^6-169r_2^4-250r_2^2+53)c_{4\beta}-4(29r_2^4-412r_2^2+47)r_2s_{2\beta}-112r_2^6+681r_2^4+564r_2^2-125] \\ +g^4 \bigg\{ \frac{1}{1536\pi^2(r_2^2-1)^4\mu^2} [(30r_2^6-169r_2^4-250r_2^2+53)c_{4\beta}-4(29r_2^4-412r_2^2+47)r_2s_{2\beta}-112r_2^6+681r_2^4+564r_2^2-125] \bigg\} \bigg\} + g^4 \bigg\{ \frac{1}{1536\pi^2(r_2^2-1)^4\mu^2} [(30r_2^6-169r_2^4-250r_2^2+53)c_{4\beta}-4(29r_2^4-412r_2^2+47)r_2s_{2\beta}-112r_2^6+681r_2^4+564r_2^2-125] \bigg\} + g^4 \bigg\} \bigg\} \bigg\} + g^4 \bigg\{ \frac{1}{1536\pi^2(r_2^2-1)^4\mu^2} \bigg\} \bigg\} + g^4 \bigg\{ \frac{1}{1536\pi^2(r_2^2-1)^4\mu^2} [(30r_2^6-169r_2^4-250r_2^2+53)c_{4\beta}-4(29r_2^6-412r_2^2+47)r_2s_{2\beta}-112r_2^6+681r_2^4+564r_2^2-125] \bigg\} + g^4 \bigg\} \bigg\} + g^4 \bigg\{ \frac{1}{1536\pi^2(r_2^2-1)^4\mu^2} \bigg\} \bigg\} + g^4 \bigg\} + g^4 \bigg\} \bigg\} + g^4 \bigg\{ \frac{1}{1536\pi^2(r_2^2-1)^4\mu^2} \bigg\} \bigg\} + g^4 \bigg\} \bigg\} \bigg\} \bigg\} + g^4 \bigg\} \bigg\} \bigg\} + g^4 $	
	$-\frac{\log_{0}^{\frac{(2-1)}{2}}}{256\pi^{2}(r_{2}^{2}-1)^{2}\mu^{2}}[(4r_{2}^{4}-13r_{2}^{4}-35r_{2}^{4}-18r_{2}^{2}+6)c_{4y}-4(5r_{2}^{4}-35r_{2}^{4}-32r_{2}^{2}+6)r_{2}s_{4y}-6r_{2}^{4}+19r_{2}^{6}+15r_{2}^{4}+6r_{2}^{2}-6]\Big\}, \tag{B13}$	
CR	$g = g^{\prime 4} \left\{ \frac{1}{384 a^2 (r_1^2 - 1)^4 \mu^2} [(r_1^6 - 10r_1^4 - 37r_1^2 - 2)c_{40} + 2(-7r_1^4 + 92r_1^2 + 11)r_1s_{20} - 18r_1^6 + 87r_1^4 + 78r_1^2 - 3] + 2(-7r_1^4 + 92r_1^2 + 11)r_1s_{20} - 18r_1^6 + 87r_1^4 + 78r_1^2 - 3] + 2(-7r_1^4 + 92r_1^2 + 11)r_1s_{20} - 18r_1^6 + 87r_1^4 + 78r_1^2 - 3] + 2(-7r_1^4 + 92r_1^2 + 11)r_1s_{20} - 18r_1^6 + 87r_1^4 - 18r_1^2 - 3] + 2(-7r_1^4 + 92r_1^2 + 11)r_1s_{20} - 18r_1^6 + 87r_1^4 - 18r_1^2 - 3] + 2(-7r_1^4 + 92r_1^2 + 11)r_1s_{20} - 18r_1^6 + 87r_1^4 - 18r_1^2 - 3] + 2(-7r_1^4 + 92r_1^2 + 11)r_1s_{20} - 18r_1^6 + 87r_1^4 - 18r_1^2 - 3] + 2(-7r_1^4 + 92r_1^2 + 11)r_1s_{20} - 18r_1^6 + 87r_1^4 - 18r_1^2 - 3] + 2(-7r_1^4 + 92r_1^2 + 11)r_1s_{20} - 18r_1^6 + 87r_1^4 - 18r_1^2 - 3] + 2(-7r_1^4 + 18r_1^2 - 18r_1^$	
	$+ \frac{\text{Log}_{24}^{(p_1^2)} r_1^2}{64 \kappa^2 (r_1^2 - 1)^5 \mu^2} [(5r_1^2 + 3)c_{4\beta} + 2(r_1^4 - 7r_1^2 - 10)r_1s_{2\beta} + r_1^{\beta} - 2r_1^4 - 20r_1^2 - 3] \bigg\}$	
	$+g^{2}g^{2}\left\{\frac{-r_{1}^{2}\text{Log}[\frac{dr_{1}}{dr_{1}}]}{128\pi^{2}(r_{1}^{2}-1)^{4}(r_{1}-r_{2})^{3}(r_{1}+r_{2})\mu^{2}}[-8s_{2\mu}(r_{1}^{6}+r_{2}r_{1}^{5}+3r_{1}^{4}-5r_{2}r_{1}^{3}-(5r_{2}^{2}+1)r_{1}^{2}+(3r_{2}^{3}+r_{2})r_{1}+2r_{2}^{2})\right\}$	
	$+ c_{4\beta}(r_1^7 - (3r_2^2 + 2)r_1^5 + 2(r_2^2 + 6)r_2r_1^4 + (9 - 6r_2^2)r_1^3 - 20r_2r_1^2 - (3r_2^2 + 4)r_1 + 6r_2^3 + 8r_2) - r_1^7 + 6r_2^3 + 8r_2r_1^2 - r_1^2 + 6r_2^3 + 8r_2r_1^2 - r_1^2 + 6r_2^3 + 8r_2r_1^2 - r_1^2 + 6r_2^3 + 6r_2^2 + 6r_$	
	$-4r_2r_1^6-5r_2^2r_1^5-18r_1^5+2r_2^3r_1^4+16r_2r_1^4+26r_2^2r_1^3-5r_1^3-12r_2^3r_1^2+20r_2r_1^2-9r_2^2r_1+4r_1-6r_2^3-8r_2]$	
	$+\frac{r_2^3 Log[\frac{ k_2 }{ p^2 }}{128\pi^2(r_1^2-1)^4(r_1-r_2)^3(r_1+r_2)\mu^2}[-8((3r_2r_1^3+(2-5r_2^2)r_1^2+(r_2^5-5r_2^3+r_2)r_1+(r_2^4+3r_2^2-1)r_2^2)s_{2\beta}(r_2^2-r_2^2)r_2^2]$	
	$+ (2(r_2^4 + 3)r_1^3 - 3r_2(r_2^2 + 1)^2r_1^2 + 4(3r_2^4 - 5r_2^2 + 2)r_1 + (r_2^6 - 2r_2^4 + 9r_2^2 - 4)r_2)c_{4\beta} - r_2^2 - 4r_1r_2^6 - 5r_1^2r_2^6 - 5r$	
	$-18r_2^5 + 2r_1^3r_2^4 + 16r_1r_2^4 + 26r_1^2r_2^3 - 5r_2^3 - 12r_1^3r_2^2 + 20r_1r_2^2 - 9r_1^2r_2 + 4r_2 - 6r_1^3 - 8r_1]$	Δ
	$-\frac{1}{384\pi^2(r_1^2-1)^3(r_2^2-1)^3(r_1-r_2)^2\mu^2}[8(r_2^6-11r_2^4+16r_2^2-3)r_1^3r_2+2(4r_2^6+3r_2^4-12r_2^2+5)r_1r_2$	~
	$+ c_{46}(-(16r_2^6 + 27r_2^4 - 12r_2^2 + 5)r_1^6 + 8(r_2^5 + r_2^3 + r_2)r_1^7 + (8r_2^7 + 26r_2^5 - 88r_2^3 + 6r_2)r_1^5 - 5r_2^6 + 28r_2^4 - 11r_2^2 + 5r_2^6 + 5r_2^$	С
	$+ (-27r_2^6 + 184r_2^4 - 101r_2^2 + 28)r_1^4 + (12r_2^6 - 101r_2^4 + 40r_2^2 - 11)r_1^2)$	

$-12 s_{20} ((2 r_2^4+5 r_2^2-1) r_1^2+(-4 r_2^5-5 r_2^3+3 r_2) r_1^6+(-4 r_2^6+8 r_2^4-31 r_2^2+9) r_1^5+(2 r_2^6+8 r_2^4+17 r_2^2-9) r_2 r_1^4+(-4 r_2^6+8 r_2^2-1) r_2^2+(-4 r_2^6+$
$+ 3(r_2^2 - 3)r_1r_2^4 + (5r_2^4 - 31r_2^2 + 8)r_1^2r_2^3 - (r_2^4 - 9r_2^2 + 2)r_2^3 + (-5r_2^6 + 17r_2^4 + 8r_2^2 - 2)r_1^3)$
$+ 2(r_2^5 - 26r_2^3 + r_2)r_1^7 + (20r_2^6 + 9r_2^4 + 24r_2^2 - 17)r_1^6 + 2(r_2^6 + r_2^4 + 97r_2^2 - 15)r_2r_1^5$
$+ (9r_2^6 - 344r_2^4 + 271r_2^2 - 68)r_1^4 - 17r_2^6 - 68r_2^4 + 25r_2^2 - 2(26r_2^6 - 97r_2^4 + 236r_2^2 - 69)r_1^3r_2$
$\left. + 2(r_2^6 - 15r_2^4 + 69r_2^2 - 19)r_1r_2 + (24r_2^6 + 271r_2^4 - 164r_2^2 + 25)r_1^2 \right] \bigg\}$
$+g^4 \bigg\{ -\frac{1}{384\pi^2 (r_2^6-1)^4 \mu^2} [(5r_2^6+76r_2^4+103r_2^2+8)c_{4\beta}-2(17r_2^4+332r_2^2+35)r_2s_{3\beta}+36r_2^6-321r_2^4-312r_2^2+21] \\ -\frac{1}{384\pi^2 (r_2^2-1)^4 \mu^2} [(5r_2^6+76r_2^4+103r_2^2+8)c_{4\beta}-2(17r_2^4+103r_2^2+8)r_2s_{3\beta}+36r_2^6-321r_2^4-312r_2^2+21] \\ -\frac{1}{384\pi^2 (r_2^2-1)^4 \mu^2} [(5r_2^6+76r_2^2+103r_2^2+8)r_2s_{3\beta}+36r_2^6-321r_2^2+321r_2^2+32)r_2s_{3\beta}+36r_2^6-321r_2^2+321r_$
$+\frac{\text{Log}_{\mu\nu}^{(H)}r_{2}^{2}}{64\pi^{2}(r_{2}^{2}-1)^{2}\mu^{2}}[(6r_{2}^{4}+17r_{2}^{2}+9)c_{4g}+2(r_{2}^{4}-31r_{2}^{2}-34)r_{2}s_{3g}+r_{2}^{6}-8r_{2}^{4}-80r_{2}^{2}-9]\Big\},$ (B14)
$= q^{4} \left\{ \frac{(17r_{1}^{4} - 7r_{1}^{2} - 4)c_{2g}^{2}}{(2r_{1}^{4} - 2r_{1}^{2} - 2)c_{2g}^{2}Log[\frac{M_{1}^{2}}{\mu}]}{(2r_{1}^{4} - 7r_{2}^{2} - 16)c_{2g}^{2}} - \frac{r_{1}^{2}(r_{2}^{4} + 6r_{2}^{2} - 6)c_{2g}^{2}Log[\frac{M_{2}^{2}}{\mu}]}{(2r_{1}^{4} - 2r_{2}^{2} - 2r_{2$
$\left(768\pi^{a}(r_{1}^{a}-1)^{a}\mu^{a}\right)$ $\left(768\pi^{a}(r_{1}^{a}-1)^{a}\mu^{a}\right)$ $\left(768\pi^{a}(r_{2}^{a}-1)^{a}\mu^{a}\right)$
$+g^{2}g^{2}\left\{\frac{r_{1}^{3}\text{Log}[\frac{m_{1}}{p^{2}}]}{128\pi^{2}(r_{2}^{2}-1)^{4}(r_{1}-r_{2})^{3}(r_{1}+r_{2})w^{2}}\left[-4c_{4\beta}(2(r_{2}^{2}-1)r_{1}+r_{1}^{5}+3r_{2}r_{1}^{4}+(2-3r_{2}^{2})r_{1}^{3}+(r_{2}^{2}-8)r_{2}r_{1}^{2}+4r_{2}\right]\right\}$
$+2(-(r_{3}^{2}-1)r_{1}^{4}+(r_{3}^{2}-5)r_{2}r_{1}^{3}+3r_{1}^{6}+r_{2}r_{1}^{5}-(5r_{3}^{2}+2)r_{1}^{2}+(r_{3}^{2}+2)r_{2}r_{1}+4r_{3}^{2})s_{2a}+3r_{1}^{7}-r_{3}^{2}r_{1}^{5}+r_{1}^{5}$
$+2r_3^3r_1^4+r_3r_1^4-7r_2^2r_1^3+r_1^3-r_3^3r_1^2-8r_3r_1^2+5r_2^2r_1-2r_1+2r_3^3+4r_3$
2 oct
$-\frac{r_{2LMB}^{-}(r_{2}^{2}-1)^{4}(r_{1}-r_{2})^{3}(r_{1}+r_{2})\mu^{2}}{128\pi^{2}(r_{2}^{2}-1)^{4}(r_{1}-r_{2})^{3}(r_{1}+r_{2})\mu^{2}}\left[-c_{4\rho}\left((r_{2}^{2}r_{1}^{3}+(2r_{2}-3r_{2}^{3})r_{1}^{2}+(3r_{2}^{4}-8r_{2}^{2}+4)r_{1}+(r_{2}^{4}+2r_{2}^{2}-2)r_{2}\right)\right]$
$+2((r_2^3+r_2)r_1^3-(r_2^4+5r_2^2-4)r_1^2+(r_2^4-5r_2^2+2)r_2r_1+(3r_2^4+r_2^2-2)r_2^2)s_{2\beta}+3r_2^2-r_1^2r_2^5+r_2^5+2r_1^3r_2^4+r_1r_2^4+r_2r_2^2+r_2^2r_2^2+r_2^2r_2^2+r_2^2r_2^2$
$-7r_1^2r_2^3 + r_2^3 - r_1^3r_2^2 - 8r_1r_2^2 + 5r_1^2r_2 - 2r_2 + 2r_1^3 + 4r_1$
$+\frac{1}{768\pi^2(r_1^2-1)^3(r_2-1)^3(r_1-r_2)^2\mu^2}[((-2r_2^4-5r_2^3+r_2)r_1^2+(4r_2^6+17r_2^4-19r_2^2+4)r_1^6-r_2(2r_2^6+12r_2^4-57r_2^2+25)r_1^5-r_2^2+2r_2^6+r_2^2+r_2^$
+ $(17r_{2}^{6} - 126r_{2}^{4} + 120r_{2}^{2} - 29)r_{1}^{4} + (-5r_{1}^{7} + 57r_{2}^{5} - 126r_{2}^{3} + 56r_{2})r_{1}^{3} + (-19r_{2}^{6} + 120r_{2}^{4} - 102r_{2}^{2} + 19)r_{1}^{2}$
$+ (r_{2}^{6} - 25r_{2}^{4} + 56r_{1}^{2} - 26)r_{2}r_{1} + (4r_{3}^{4} - 29r_{3}^{2} + 19)r_{3}^{2})c_{46} + 2((13r_{2}^{4} - 2r_{2}^{2} + 1)r_{1}^{7} + (-25r_{2}^{5} + 2r_{3}^{2} + 11r_{2})r_{1}^{6} + (-25r_{2}^{5} + 2r_{3})r_{1}^{6} + (-25r_{2}^{5} + 2r_{3})r_{1}^{6} + (-25r_{2}^{5} + 2r_{3})r_{1}^{6} + (-25r_{2}^{5} + 2r_{3}$
$+ (-25r_{5}^{6} + 48r_{5}^{4} - 93r_{5}^{2} + 34)r_{5}^{5} + (13r_{5}^{6} + 48r_{5}^{4} + 9r_{2}^{2} - 34)r_{2}r_{4}^{4} + (2r_{5}^{6} + 9r_{5}^{4} + 48r_{5}^{2} - 23)r_{1}^{3}$
+ $(-2r_2^7 - 93r_3^5 + 48r_3^3 + 11r_2)r_1^2 + (11r_3^4 - 34r_3^2 + 11)r_3^2r_1 + (r_2^4 + 34r_2^2 - 23)r_3^3)s_{28}$
$+ 3(3r_2r_5^5((r_2^2 - 1) + 2r_2^6 - 8r_2^4) + r_2^2((r_2^2 - 5) + 10r_2^4) + 3(2r_2^5 - r_2^3 + r_2)r_1^7 + (-20r_2^6 + 29r_2^4 - 25r_2^2 + 10)r_1^6$
$+ \left. $
) (B15)

And we don't do c_6 which is even more complicated but less useful.

・ロト ・回ト ・ヨト ・ヨ

Gaugino Mass Unification $M_1/M_2 = 0.5$ & tan $\beta = 2$

Figure: Hatched: $m_{\tilde{\chi}_{2}^{0}/\tilde{\chi}_{1}^{\pm}} - m_{\tilde{\chi}_{1}^{0}} > 8$ GeV, covered by soft lepton plus missing E_{T} search. Individual 1 σ constraint curves: Blue: FCC-ee *T*, Cyan: FCC-ee *S*, Magenta: FCC-ee $h \rightarrow \gamma\gamma$, Orange: CEPC Δg_{1}^{Z} .

"Moving target" but with "fixed splitting" to fill

Gaugino Mass Unification $M_1/M_2 = 0.5$ & tan $\beta = 50$

Figure: Hatched: $m_{\tilde{\chi}_{2}^{0}/\tilde{\chi}_{1}^{\pm}} - m_{\tilde{\chi}_{1}^{0}} > 8$ GeV, covered by soft lepton plus missing E_{T} search. Individual 1 σ constraint curves: Blue: FCC-ee *T*, Cyan: FCC-ee *S*, Magenta: FCC-ee $h \rightarrow \gamma\gamma$, Orange: CEPC Δg_{1}^{Z} .

"Moving target" but with "fixed splitting" to fill

Anomaly Mediation $M_1/M_2 = 3.3$ & tan $\beta = 2$

Figure: Hatched: $m_{\tilde{\chi}_{2}^{0}/\tilde{\chi}_{1}^{\pm}} - m_{\tilde{\chi}_{1}^{0}} > 8$ GeV, covered by soft lepton plus missing E_{T} search. Individual 1 σ constraint curves: Blue: FCC-ee *T*, Cyan: FCC-ee *S*, Magenta: FCC-ee $h \rightarrow \gamma\gamma$, Orange: CEPC Δg_{1}^{Z} .

"Moving target" but with "fixed splitting" to fill

Anomaly Mediation $M_1/M_2 = 3.3$ & tan $\beta = 50$

Figure: Hatched: $m_{\tilde{\chi}_{2}^{0}/\tilde{\chi}_{1}^{\pm}} - m_{\tilde{\chi}_{1}^{0}} > 8$ GeV, covered by soft lepton plus missing E_{T} search. Individual 1 σ constraint curves: Blue: FCC-ee *T*, Cyan: FCC-ee *S*, Magenta: FCC-ee $h \rightarrow \gamma\gamma$, Orange: CEPC Δg_{1}^{Z} .

"Moving target" but with "fixed splitting" to fill

The High \sqrt{s} Enhancement.

 $\tan \beta = 10$ and $M_1/M_2 = 1.3$.

Figure: 1 σ constraint curves for each set: Blue: FCC-ee EWPT, Orange: CEPC TGC, Red Solid: FCC-ee Higgs, Red Dashed: ILC Higgs at $\sqrt{s} = 500$ GeV run, Red Dotted: ILC Higgs at $\sqrt{s} = 1$ TeV run.

<ロト </p>

- We have developed the CDE technique to calculate the dimension-6 operators of integrating out the MSSM electroweakino sector.
- We show the indirect way can probe the very degenerated electroweakino spectrum which is difficult for direct collider experiment.

イロト イヨト イヨト イヨ

Notation	Operator	Notation	Operator	Notation	Operator
\mathcal{O}_6	$(H^{\dagger}H)^{3}$	\mathcal{O}_{GG}	$g_s^2 H^\dagger H G_{\mu u}^a G^{a\mu u}$	\mathcal{O}_W	$ig(H^{\dagger}\overleftrightarrow{D}_{\mu}t^{a}H)D_{\nu}W^{a\mu\nu}$
\mathcal{O}_H	$\frac{1}{2}(\partial_{\mu}(H^{\dagger}H))^{2}$	\mathcal{O}_{WW}	$g^2 H^{\dagger} H W^a_{\mu\nu} W^{a\mu\nu}$	\mathcal{O}_B	$ig'(H^{\dagger}\overleftrightarrow{D}_{\mu}H)\partial_{\nu}B^{\mu\nu}$
\mathcal{O}_T	$\frac{1}{2}(H^{\dagger} \overleftrightarrow{D}_{\mu} H)^2$	\mathcal{O}_{BB}	$g^{\prime 2} H^{\dagger} H B_{\mu u} B^{\mu u}$	\mathcal{O}_{HW}	$2ig(D_{\mu}H)^{\dagger}t^{a}(D_{\nu}H)W^{a\mu u}$
\mathcal{O}_R	$(H^{\dagger}H)(D_{\mu}H^{\dagger}D^{\mu}H)$	\mathcal{O}_{WB}	$2gg'H^{\dagger}t^{a}HW^{a}_{\mu u}B^{\mu u}$	\mathcal{O}_{HB}	$2ig'Y_H(D_\mu H)^\dagger(D_ u H)B^{\mu u}$
				\mathcal{O}_D	$(D_{\mu}D^{\mu}H^{\dagger})(D_{\nu}D^{\nu}H)$

・ロト ・回ト ・ヨト ・ヨト

Notation	Operator	Notation	Operator	Notation	Operator
\mathcal{O}_6	$(H^{\dagger}H)^{3}$	\mathcal{O}_{GG}	$g_s^2 H^\dagger H G_{\mu u}^a G^{a\mu u}$	\mathcal{O}_W	$ig(H^{\dagger} \overleftrightarrow{D}_{\mu} t^{a} H) D_{\nu} W^{a \mu \nu}$
\mathcal{O}_H	$\frac{1}{2}(\partial_{\mu}(H^{\dagger}H))^{2}$	\mathcal{O}_{WW}	$g^2 H^{\dagger} H W^a_{\mu\nu} W^{a\mu\nu}$	\mathcal{O}_B	$ig'(H^{\dagger}\overleftrightarrow{D}_{\mu}H)\partial_{\nu}B^{\mu u}$
\mathcal{O}_T	$\frac{1}{2}(H^{\dagger}\overleftrightarrow{D}_{\mu}H)^{2}$	\mathcal{O}_{BB}	$g^{\prime 2} H^{\dagger} H B_{\mu u} B^{\mu u}$	\mathcal{O}_{HW}	$2ig(D_{\mu}H)^{\dagger}t^{a}(D_{\nu}H)W^{a\mu u}$
\mathcal{O}_R	$(H^{\dagger}H)(D_{\mu}H^{\dagger}D^{\mu}H)$	\mathcal{O}_{WB}	$2gg'H^{\dagger}t^{a}HW^{a}_{\mu u}B^{\mu u}$	\mathcal{O}_{HB}	$2ig'Y_H(D_\mu H)^\dagger(D_ u H)B^{\mu u}$
				\mathcal{O}_D	$(D_{\mu}D^{\mu}H^{\dagger})(D_{\nu}D^{\nu}H)$

・ロト ・回ト ・ヨト ・ヨ

Table: The uncertaint	ies expected at each experime	ents, for the EWPT ex	xperiments (<i>T</i> and <i>S</i>),
the TGC experiments	$(\Delta g_1^Z, \Delta \kappa_\gamma \text{ and } \lambda_\gamma)$ and two	representative chann	els of eight Higgs
experiment channels (the others refer to the referen	ces therein).	

Observable	Т	5	$10^4 \Delta g_1^Z$	$10^4 \Delta \kappa_{\gamma}$	$10^4 \lambda_\gamma$	$\frac{\Delta(\sigma_{Zh} Br_{bb})}{\sigma_{Zh}^{SM} Br_{bb}^{SM}}$	$\frac{\Delta(\sigma_{Zh} \text{Br}_{\gamma\gamma})}{\sigma_{Zh}^{\text{SM}} \text{Br}_{\gamma\gamma}^{\text{SM}}}$
ILC (250 GeV)	0.022	0.017				1.1%	35%
ILC (500 GeV)	0.022	0.017	2.8	3.1	4.3	0.66%	23%
ILC (1 TeV)	0.022	0.017	1.8	1.9	2.6	0.47%	8.5%
CEPC	0.009	0.014	1.59	2.30	1.67	0.32%	9.1%
FCC-ee	0.004	0.007				0.2%	3.0%

・ロト ・回ト ・ヨト ・ヨト