

NuSTAR and Super-Eddington Accretion onto Neutron Stars

Murray Brightman, Fiona Harrison, Matteo Bachetti, Felix Fuerst, Daniel Stern, Matthew Middleton, Andy Fabian, Dom Walton, Didier Barret

NuSTAR

Nuclear Spectroscopic Telescope Array "bringing the high-energy universe into focus"

NASA Small Explorer (SMEX) mission

Launch Date: June 13, 2012

Extended Mission: since August 2014

Principal Investigator (P.I.): Fiona Harrison (Caltech)

Project Scientist: Daniel Stern (JPL/Caltech)

http://www.nustar.caltech.edu/

X-Ray Telescopes & the Electromagnetic Spectrum

low-energy X-rays "soft" X-rays

high-energy X-rays "hard" X-rays

NuSTAR is the first focusing hard X-ray satellite

Coded Aperture Optics: high background, large detector, blurry images

Grazing Incidence Optics:
low background, compact detector, sharp images

Three Key Technologies

High-Energy Missions in Orbit:

angular resolution comparison

Ultraluminous X-Ray Sources

- large black holes, ~1000x the mass of the sun, feeding at typical rates?
- stellar mass black holes feeding at prodigious rates?
- something else?

Observed Mass Ranges of Compact Objects

Stellar Black Hole

Intermediate Mass Black Hole

Supermassive Black Hole

Neutron Star

Object Mass (Relative to the Sun)

- large black holes, ~1000x the mass of the sun, feeding at typical rates?
- stellar mass black holes feeding at prodigious rates?
- something else?

Messier 82 (AKA M82, or the "Cigar Galaxy")

NuSTAR detects coherent pulsations from an ultraluminous X-ray source

Bachetti+14

NuSTAR detects coherent pulsations from an ultraluminous X-ray source

Bachetti+14

Can only be produced by a rapidly spinning, magnetized neutron star (black holes cannot produce these)

1.37-s period,
-2x10⁻¹⁰ s s⁻¹ variable period
derivative
2.5-day orbital period
5.2-M_{sol} minimum mass companion

Eddington limit

$$L_{
m Edd} = rac{4\pi G M m_{
m p} c}{\sigma_{
m T}}$$

$$\cong 1.26 imes 10^{31} \left(rac{M}{M_{\odot}}
ight) \mathrm{W}$$

$$1.26 imes 10^{38} \left(rac{M}{M_{\odot}}
ight)
m erg/s$$

High B-field (B>10¹²G) pulsars can theoretically exceed limit... (e.g. Basko & Sunyaev 1975) ...by factors of ~a few

M82 X-2 reaches 100x Eddington limit for a 1.4 M_{sol} compact object!!

Magnetic field strength of the ultraluminous pulsar

High magnetic field strength (1013 G)

- Dall'Osso et al (2015) explains high L_X and variation in dP/dt
- Eksi et al. (2015) based on torque equilibrium.

Typical magnetic field strength (1012 G)

- Christodoulou et al. (2014) the observed luminosity can be accounted for by geometric beaming.

Low magnetic field strength (109 G)

- Kluzniak & Lasota (2015) based on ratio of spin-up to luminosity.

...and many others

Further observational evidence required...

Brightman+18 M51, the Whirlpool Galaxy 0.1 0.01 104 (data-model)/error JLX8 (data-model)/error Energy (keV)

Strong absorption line at 4.5 keV

- Simulations show not a statistical fluctuation (3.8σ)
- Not an instrumental feature
- Not a known atomic transition

Strong absorption line at 4.5 keV

- Simulations show not a statistical fluctuation (3.8σ)
- Not an instrumental feature
- Not a known atomic transition

Cyclotron line

Cyclotron lines:

Cyclotron resonance scattering features (CRSF). Caused by the transition of charged particles between Landau levels produced by a magnetic field.

$$E_n = m_e c^2 \frac{\sqrt{1 + 2n(B/B_{crit})\sin^2 \theta} - 1}{\sin^2 \theta} \frac{1}{1 + z}$$

$E_{cyc} = (\hbar e/mc)B$

Not only implies the presence of a neutron star, but gives a direct measurement of its magnetic field strength.

Cyclotron lines:

Cyclotron resonance scattering features (CRSF). Caused by the transition of charged particles between Landau levels produced by a magnetic field.

$$E_n = m_e c^2 \frac{\sqrt{1 + 2n(B/B_{crit})\sin^2 \theta} - 1}{\sin^2 \theta} \frac{1}{1 + z}$$

$$E_{cyc} = (\hbar e/mc)B$$

Assuming an electron origin: $B = 4(1+z) \times 10^{11}G$

Her X-I, Fuerst+I3

Cyclotron lines:

Cyclotron resonance scattering features (CRSF). Caused by the transition of charged particles between Landau levels produced by magnetic field.

$$c^{2} \frac{\sqrt{1 + 2n(B/B_{\text{crit}})\sin^{2}\theta} - 1}{\sin^{2}\theta} \frac{1}{1 + z}$$

 $E_{cyc} = (\hbar e/mc)B$

Assuming an electron origin: $3 = 4(1+z) \times 10^{11}$ G

Her X-I, Fuerst+I3

Cyclotron lines:

For electrons, $\sigma/E > 0.1$

Cyclotron lines:

For electrons, $\sigma/E > 0.1$ But observed line has $\sigma/E \sim 0.02$

Cyclotron lines:

For electrons, $\sigma/E \sim 0.1$ But observed line has $\sigma/E \sim 0.02$

Protons are more massive, and produce narrower lines (not often observed)

 $E_{cyc} = (\hbar e/mc)B$

Assuming proton origin:

$$B = 7(1 + z) \times 10^{14} G$$

Proton CRSF at 4.5 keV?

- Implies an ultra-strong magnetic field strength close to the surface of the NS
- Would significantly reduce electron scattering cross-section → Allow super-Eddington accretion

More data required

- Detect pulsations
- Detect harmonic lines

Summary:

NuSTAR discovery that M82 X-2 was powered by accretion onto a neutron star revolutionised the field of ultraluminous X-ray sources

Are all ULXs powered by neutron stars?

Do NS-ULXs harbour immense magnetic fields?