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NuSTAR
Nuclear Spectroscopic Telescope Array

“bringing the high-energy universe into focus”

NASA Small Explorer (SMEX) mission
Launch Date:  June 13, 2012
Extended Mission:  since August 2014
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low-energy X-rays
“soft” X-rays

high-energy X-rays
“hard” X-rays



INTEGRAL !

Coded Aperture Optics: !
high background, large detector, blurry images

NuSTAR is the first focusing hard X-ray satellite

NuSTAR!

Grazing Incidence Optics: !
low background, compact detector, sharp 

images



Three Key Technologies!

hard X-ray optics
(HEFT:  High-Energy 
Focusing Telescope)

deployable mast
(SRTM: Shuttle Radar
Topography Mission)

CdZnTe detector
(HEFT)



High-Energy Missions in Orbit: !
angular resolution comparison

NGC 1365

beam size:  20 arcmin
(Moon is ~30 arcmin)

beam size:  18 arcsec
(Mars at max is ~25 arcsec)



Ultraluminous!
X-Ray Sources!



IC 342

•  large black holes, ~1000x the mass of the sun, feeding at typical rates?
• stellar mass black holes feeding at prodigious rates?
• something else?
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Messier 82 (AKA M82, or the “Cigar Galaxy”)



M82 X-1M82 X-2



M82 X-1M82 X-2

NuSTAR detects coherent pulsations 
from an ultraluminous X-ray source
Bachetti+14



M82 X-1M82 X-2

NuSTAR detects coherent pulsations 
from an ultraluminous X-ray source

Can only be produced by a rapidly 
spinning, magnetized neutron star 
(black holes cannot produce these)

1.37-s period, 
-2x10-10 s s-1 variable period 
derivative
2.5-day orbital period
5.2-Msol minimum mass companion 

Bachetti+14



Eddington limit







High B-field (B>1012G) pulsars can theoretically exceed limit… 
(e.g. Basko & Sunyaev 1975)
…by factors of ~a few

M82 X-2 reaches100x Eddington limit for a 1.4 Msol compact object!!



High magnetic field strength (1013  G)
- Dall’Osso et al (2015) explains high LX and variation in dP/dt
- Eksi et al. (2015) based on torque equilibrium.

Typical magnetic field strength (1012 G)
- Christodoulou et al. (2014) the observed luminosity can be 
accounted for by geometric beaming.

Low magnetic field strength (109 G)
- Kluzniak & Lasota (2015) based on ratio of spin-up to 
luminosity.

…and many others

Further observational evidence required…

Magnetic field strength of the ultraluminous 
pulsar



M82 X-2 (Bachetti+14) NGC 7793 P13 
(Fuerst+16, Israel+17)

NGC 5907 ULX1(Israel+17) NGC 300 ULX1 (Carpano+18)



M51, the Whirlpool Galaxy

ULX8



M51, the Whirlpool GalaxyBrightman+18

ULX8



Strong absorption 
line at 4.5 keV

- Simulations show not a 
statistical fluctuation 
(3.8σ)
- Not an instrumental 
feature
- Not a known atomic 
transition

Brightman+18
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Strong absorption 
line at 4.5 keV

- Simulations show not a 
statistical fluctuation 
(3.8σ)
- Not an instrumental 
feature
- Not a known atomic 
transition

Cyclotron line



Ecyc=(ħe/mc)B

Cyclotron lines:

Cyclotron resonance scattering 
features (CRSF). Caused by the 
transition of charged particles 
between Landau levels produced by 
a magnetic field.

Not only implies the presence of a 
neutron star, but gives a direct 
measurement of its magnetic field 
strength.

Brightman+18



Ecyc=(ħe/mc)B
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Ecyc=(ħe/mc)B

Cyclotron lines:

Cyclotron resonance scattering 
features (CRSF). Caused by the 
transition of charged particles 
between Landau levels produced by 
a magnetic field.

Assuming an electron origin:
B= 4(1+z)×1011G

Her X-1, Fuerst+13



For electrons,
σ/E > 0.1

Cyclotron lines:

Her X-1, Fuerst+13
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For electrons,
σ/E > 0.1
But observed line has
σ/E ~ 0.02

Cyclotron lines:Brightman+18
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For electrons,
σ/E ~ 0.1
But observed line has
σ/E ~ 0.02

Protons are more 
massive, and produce 
narrower lines 
(not often observed)

Cyclotron lines:Brightman+18



Ecyc=(ħe/mc)B

Assuming proton origin:
B= 7(1 + z) × 1014 G

Cyclotron lines:Brightman+18



Proton CRSF at 4.5 keV?

- Implies an ultra-strong 
magnetic field strength 
close to the surface of the 
NS
- Would significantly reduce 
electron scattering cross-
section è Allow super-
Eddington accretion

More data required
-  Detect pulsations
-  Detect harmonic lines

Brightman+18



NuSTAR discovery that M82 X-2 was 
powered by accretion onto a neutron star 
revolutionised the field of ultraluminous 
X-ray sources

Are all ULXs powered by neutron stars?

Do NS-ULXs harbour immense magnetic 
fields? 

Summary:


