New physics results from DarkSide-50

UC Davis on the behalf of the DarkSide collaboration

CIPANP 2018 - May, 31st 2018

DarkSide-50 detector overview

- Water Cherenkov detector (1,000 tons of ultra pure water): active veto for µ and passive shield for external radiation
- Liquid scintillator detector (30 tons of PC+PPO+TMB): active Ys and neutron detector
 thanks to ¹⁰B loading
- LAr TPC detector (current phase ~50 kg of argon in the fiducial volume): inner detector for WIMP

 Light signal (S1) time profile allows PSD tanks to f90 parameter (fraction of light in the first 90 ns)

-14

-7

-5

-4

-6

-3

-2

_1

0

t [μs]

• Electroluminescence/ionization signal (S2) due to drifted electrons allows 3d position reconstruction and additional discrimination (S2/S1)

-14

t [μs]

High mass χ search results

• A 534 live-days blind analysis: blinding box (red outline) shown on the old data sample

 Goal: design an analysis that will have <0.1 event of background in the to-be-designed search box (Final box chosen: dashed red)

Nuclear recoil background

- Neutrons: cosmogenic (produced by muons interaction with surrounding materials) or spontaneous (α,n) reaction. PMTs are the main source
- Rejection:
 - Multiple scatter in TPC
 - Coincidence with LSV measured efficiency with AmC: 0.9964±0.0004
 - Coincidence with WCD suppression of cosmogenics

• Rejections:

4.5

1.6

1.4

1.2

0.8

0.6

0.4

0.2

30

35

Events / [250 PE]

- Small background at low energy (S1<460PE) but can be degraded
- Self-vetoing in DS50:

Energy [MeV] 5 5

Small or no S2

5.5

40

S1 [PE]

Long S2 tail from TPB scintillation

6

Data

²¹⁰Po

²²²Rn

²¹⁸Po

45

6.5

 (10^{3})

n

Electron recoil background

- ³⁹Ar, ⁸⁵Kr and external *Y*-rays
- Cherenkov+S1: very dangerous move regular scintillation into NR band
- Rejection:
 - Usage of UAr (low ³⁹Ar content)
 - Cut on S1 fraction in max PMT
 - Pulse Shape Discrimination
- Goal: design cut to reduce ER bkg <0.08

Summary: overall background budget

Background	Estimated survivors	 Intensive background modeling of S1+Cherenkov and data selection criteria Goal of <0.1 event of background in the to-be- designed search box: achieved!
Surface a	0.001	
Cosmogenic n	<0.0003	
Radiogenic	<0.005	
ER	0.08	
Total:	0.09±0.04	 Let's open the box

Final data set and box

arXiv:1802.07198

90% C.L. Exclusion limit

arXiv:1802.07198

Low mass χ search results

- Scintillation signal (S1): E_{th}~ 13keV_{nr} weak sensitive to low mass WIMP
- Ionization signal (S2): E_{th}<0.6keV_{nr} is sensible to low mass WIMP
- S2-only signal:
 - Sensitive to single extracted electron
 - No need of PSD
- Acceptance: estimated by data+MC (MC reproduces both spatial and temporal distribution of S2 as measured in electron diffusion see <u>arXiv:1802.01427</u>)
- Fiducialization: no xy available, but use volume under inner 7 PMTs (position assigned using PMT receiving largest light)

Energy scale for ER and NR

- ER energy scale: ³⁷Ar
 - Provides 2 X-rays at 0.27 and 2.82 keV
 - Decayed with t_{1/2} =35d and no remain in the last 500d data set (compare black and blue spectra)
- NR energy scale: AmBe and AmC
 - Fit to get NR ionization yield at ROI
 - Difference with other measured points taken as systematic
 - Conservative assumption measured points are higher than fit: less ionization → less e⁻ → less sensitivity

Background and x signal

- Background: constrained in ROI fitting high energy part of the spectrum
 - At low energy, excess of events it is not understood: we are gonna measure it!
- WIMP recoil energy spectra modeled using
 - Ionization, energy quenching and detector response

Profile likelihood method

- Upper limit σ_{SI} extracted observed N_e spectrum using binned profile likelihood (PL) method
- Two signal regions (Neth of 4 and 7e⁻) which covers M_{χ} in the range [1.8,10] GeV/c²
- PL includes uncertainties both on WIMP signals (NR ionization, single electron yield) and background spectrum (rates, ER ionization yield)
- Average ionization yield dominates uncertainties. Use two fluctuation models due to lack of knowledge about fluctuation at low recoil energy: no fluctuation and binomial

90% C.L. Exclusion limit

arXiv:1802.06994

Summary and conclusions

- Successfully carried out blind analysis of 534 live-days improving our sensibility for WIMP at high mass
- Liquid argon is a sensitive media also for low mass WIMP too
- Solid foundations for next generation experiment DarkSide-20k: stay tuned!

Backups

Quality +Trgtime +S1sat

• Trigtime: the first pulse is within expected trigger time window

• S1sat: S1 pulse is not saturated

+Npulses

• Npulses: number of pulse is 2 or 3 if there is S3 (echo of S2)

• Most of surface events are gone

+40µs fid

• 40µs fid: remove 40µs from top and bottom in t_drift

 \mathbf{f}_{90}

• Lots of \s from PMTs, unresolved S1+S2 events, and surface close to top are removed

+S1pmf

• S1pmf: fraction of prompt light in the maximum PMT is less than a threshold, which is a function of t_drift and S1

• Remove S1+Cherenkov events from fused silica windows

+min S2uncorr

[•] min S2uncorr: S2≥200 PE

[•] This is more like quality cut, but remove surface events, which number of electrons are reduced by the surface effect

+xy-recon

• xy-recon: reasonable x-y reconstructed values

 \mathbf{f}_{90}

23

+S2 F90

• S2 f90: f90 of S2 pulse <0.20

• Remove S1+S1 pileup events

+min S2/S1

• min S2/S1: S2/S1 need to be above threshold, which is a function of S1

• Remove strangely small S2 events, like surface events

+max S2/S1

• max S2/S1: S2/S1 need to be below threshold, which is a function of S1

 \mathbf{f}_{90}

• Remove strangely large S2 events, which we don't expect, but applied as a safety net

+S2 i90/i1

• S2 i90/i1: S2 have reasonable rise time

 \mathbf{f}_{90}

• Remove events in which S2 is actually S1+S2 pulses

+S1 TBA

• S1 TBA: z-position from S1 Top-Bottom Asymmetry agrees with t_drift

• Remove random pileup S1 and S2

+TPB Tail

• TPB Tail: remove events, which have long tail of scintillation caused by TPB scintillation

• Remove surface events, in which α goes through TPB layer

- NLL: Negative Log Likelihood cut, which compare event position from S1 light distribution among PMTs and event position from t_drift and S2 x-y
- Remove S1 + Cherenkov events which deposit energy in separate locations

• R 2: Radial cut as a function of t_drift

• Veto: all veto cuts

• Remove neutrons

Additional rejection S2/S1

arXiv:1802.07198

- MC+Ionization model (Ref. <u>Astropart.Phys.35</u>) fit to NR data from AmBe and AmC.
- The systematic discrepancy between the extracted and measured ionization yields is taken as systematic uncertainty
- Measured points are higher than MC+Ionization model: conservativa assumption
 - Less ionization → less e → less sensitivity

