NOvA long-baseline neutrino experiment: recent results

Kirk Bays

California Institute of Technology

May 30, 2018

Neutrinos oscillate - *their flavor states (e,* μ *,* τ *) are different than their mass states (1, 2, 3)*

Connected by mixing matrix:

$$
\begin{pmatrix} \nu_e \\ \nu_\mu \\ \nu_\tau \end{pmatrix} = U^* \begin{pmatrix} \nu_1 \\ \nu_2 \\ \nu_3 \end{pmatrix}
$$

Mixing matrix \rightarrow **mixing angles – 2 flavor case:**

$$
\begin{pmatrix} V_e \\ V_\mu \end{pmatrix} = \begin{pmatrix} \cos \theta & \sin \theta \\ -\sin \theta & \cos \theta \end{pmatrix} \begin{pmatrix} V_1 \\ V_2 \end{pmatrix}
$$

3 angles and a CP-violation term determine the matrix: θ_1 , θ_2 , θ_3 , δ_{CP}

Neutrino mixing (U_{PMNS}) analogous to quark mixing (U_{CKM}) but much less diagonal

$$
P_{\alpha \to \beta} = |\langle v_{\beta}(t) | v_{\alpha} \rangle|^2 = \left| \sum_{i} U_{\alpha i}^{*} U_{\beta i} e^{-im_{i}^{2} L/2E} \right|^2
$$

$$
P(v_{\mu} \rightarrow v_{\mu}) \approx 1-\sin^2(2\theta_{23})\sin^2(1.27\Delta m^2_{32}L/E)
$$

L = baseline E \rightarrow **E** of neutrino **experiment setup** $\Delta m^2_{32} = m_3^2 - m_2^2$

Things to be measured with neutrino oscillation experiments:

 θ_{12} , θ_{13} , θ_{23} Δ m²_{32,} Δ m²_{21,} mass hierarchy δ_{CP} (is CP violated by neutrinos?)

also Δm^2_{21}

(to be measured)

Neutrino mixing (U_{PMNS}) analogous to quark mixing (U_{CKM}) but much less diagonal

> **experiments can measure these especially well Long-baseline v oscillation**

 θ_{12} , θ_{13} , θ_{23} Δ m²_{21,} mass hierarchy δ_{CP} (is CP violated by neutrinos?)

 $\Delta m^2_{32} = m_3^2 - m_2^2$ also Δm^2_{21} **(to be measured)**

^E of neutrino experiment setup

arXiv:1505.01891

L = baseline

NOvA detectors

FD (at Ash River, MN, 810 km baseline):

Far Detector

16m x 16m x 60m, 14kton, on surface (some barite overburden) ~2/3 liquid scintillator by mass, ~344,000 cells, 896 planes low-Z, finely-segmented, 62% active 1 radiation length ~ 6-10 cells

ND (@ FNAL, 1km from NuMI target):

4m x 4m x 16m, 0.3kton, underground ~20,000 cells, design similar to FD

 \Box

6_{cm}

4 cm

New from previous analysis:

- Better deep learning algorithms
- Improved simulation (addition of Cherenkov light)
- New cross-section tuning
	- custom 2p2h tuning
- More statistics (up to ~8.85e20 pot)
- More sophisticated analyses

CVN - disappearance

CVN - appearance

NOvA Preliminary

550 µs exposure of the Far Detector

Time-zoom on 10 μ s interval during NuMI beam pulse

FD: ~10³ events

NOvA Preliminary

select v_μ events in ND **data/MC agreement good tells us simulation not too wrong**

if no oscillations, predict 763 events observe 126 events

NOvA Preliminary

NOvA Preliminary

Can plot as 90% confidence contour in θ_{23} **,** Δ **m²₃₂ space best fits:**

 $sin^2\theta_{23} = 0.558^{+.041}$ _{-.033} Δ m²₃₂ = 2.444^{+.079}_{-0.077} x 10³ eV²

$$
P\left(\nu_{\mu}^{(-)} \rightarrow \nu_{e}\right) \approx \sin^{2} 2\theta_{13} \sin^{2} \theta_{23} \frac{\sin^{2} (A-1) \Delta}{(A-1^{2})}
$$

\n
$$
\xrightarrow{(+)} 2\omega \sin \theta_{13} \sin \omega_{CP} \sin 2\theta_{12} \sin 2\theta_{23} \frac{\sin A \Delta}{A} \frac{\sin(A-1) \Delta}{A-1} \sin \Delta
$$

\n
$$
+ 2\omega \sin \theta_{13} \cos \delta_{CP} \sin 2\theta_{12} \sin 2\theta_{23} \frac{\sin A \Delta}{A} \frac{\sin(A-1) \Delta}{A-1} \cos \Delta
$$

\nWhere: $\omega = \frac{\Delta m_{21}^{2}}{\Delta m_{31}^{2}} \Delta = \Delta m_{31}^{2} \frac{L}{4E}$ $A = \frac{(-)}{4} G_{f} N_{e} \frac{L}{\sqrt{2} \Delta}$

directly measure δ_{CP} , the mass hierarchy, additional information for θ_{23}

Signature is an electron shower

Backgrounds:

- **- cosmics**
- **- neutral current**
- **- intrinsic beam** v_e

Use ND to measure intrinsic v_e **and neutral current background, extrapolate to FD**

bin in energy for three PID bins + sideband

NOvA Preliminary

real data + best fit

Contours in θ_{23} **,** δ_{CP} **space Depends a lot on mass hierarchy**

For IH, δ_{CP} 0- π is disfavored by > 3 σ !

More from NOvA:

- Sterile neutrinos: Phys. Rev. D **96**, 072006
- CVN classifier: JINST 11 (2016) no. 09, P09001
- Direct x-section measurements
	- NC coherent π^0
	- v_{μ} CC π^0 inclusive
- Dark matter searches
- Magnetic monopoles
- Supernova physics
- and **NEW** oscillation analyses upcoming at NEUTRINO
	- existing neutrino-mode with new anti-neutrino mode data
	- even better cross-section tune

..... 68% C.L.

 $-90%$ C.L.

Backups

Neutrino interactions

Charged current: v_x + nucleon \rightarrow x + hadrons $x = e$, μ , τ **hadrons: can be single p (QE)** can be shower (p, π , ...)

Neutral current: $v +$ nucleon $\rightarrow v +$ hadrons **flavor blind no lepton**

biggest uncertainty for appearance is cross-sections still statistics limited but getting close second biggest uncertainty for disappearance

A long-baseline experiment: NOvA

Then shoot it at your detectors:

A Near Detector (ND) near the beam, before oscillations

ND helps constrain FD uncertainties

cross-sections are hard! Lots of uncertainty three standard interaction types: Quasi-Elastic: just lepton and proton Resonance: hadronic system is resonance (ie delta) which decays Deep Inelastic Scattering: neutrino hits quark directly Meson Exchange Currents: only recently discovered still tons of uncertainty to rate and shape NOvA is measuring this! Important for not just NOvA! DUNE: current x-sec systs: ~10% needed: ~1%

2018 cross-section tune

Why does it matter?

- Fundamental properties of neutrinos affect lots of other things:
	- Cosmology, astrophysics
		- Why is universe matter and not anti-matter? $sin(\delta_{CP}) \neq 0 \rightarrow$ leptogenesis?
	- Phenomenology, GUTs

Are neutrinos their own anti-particle (Majorana)? $0\nu\beta\beta$, see-saw mechanism

- Can also measure neutrinos to learn about interesting sources
	- supernova neutrinos
	- sterile neutrinos
	- solar, cosmic ray neutrinos

Detectors used in long-baseline experiments can do this too

Use ND as a measurement to constrain uncertainties in the FD Far/near extrapolation

v_{μ} energy reconstruction

Reconstructed neutrino E: based on simulation $\textsf{lepton part}$ (E_{lep}^{res} = 3%) $\mathsf{hadronic\ part\ (E_{had}^{res}=30\%)}$ E_{V} = E_{lep} + E_{had} (E_{V}^{res} = 9%)

NOvA Calibration:

- Critical for any detector. Very briefly:
- Absolute energy scale is calibrated with stopping muons (dE/dx, Bethe-Bloch)
- Biggest cell by cell effect: attenuation in WLS fiber
- Check energy scales with cosmics, beam events, Michels, π^0 mass/hadronic showers in ND data (all agree to ~5%)

NOvA Reconstruction Basics:

- **Slicing: cluster hits is space and time to isolate physics interactions; highly accurate, can distinguish between > 50 FD** muons in the 550 µs spill window with almost no overlap
	- **timing resolutions: FD ~ 150ns, ND ~ 50ns**
- **Tracking: for muons especially, also protons and pions (disappearance). Use a Kalman Filter inspired algorithm**
- **Vertexing: for showers, hadronics: track lines of energy deposition back to a single start point (appearance)**

- This entire procedure is re-done beginning to end for each combination of oscillation parameters or systematics being tested
- The extrapolation provides a data-driven approach to help fix any simulation errors and constrain uncertainties **Exercises** Kirk Bays, SLAC seminar
- It is not perfect though it deals well with normalization effects, but poorly with large energy shifts
	- Thus it is also important to make the simulation as accurate as possible

NuMI beam most powerful neutrino beam in the world Recent upgrades, up to goal of 700 kW NOvA recently released third set of oscillation results

- based on 8.85 x 10²⁰ POT

All neutrino mode running, anti-neutrino data analyses ongoing

NOvA Preliminary

From 2.6 \rightarrow 0.8 σ exclusion of max mixing

new light model (include Cherenkov light) this changes E resolution (7% \rightarrow 9%) and shifts hadronic E (~70 MeV on average), which coincidentally pushes 3 events across bin boundaries (expected: 0.5)

New analysis techniques – energy resolution binning separates out poor resolution events that may be background; removes impact of possible background fluctuation