

How should we view the sea: threatening or calm?

PAUL E REIMER Physicist Argonne National Laboratory

1 June 2018 Palm Springs, CA

This work is supported in part by the U.S. Department of Energy, Office of Nuclear Physics, under Contract No. DE-AC02-06CH11357.

What are the origins of the Sea?

Conventional thought:

Gluon splitting leads to sea

Department of Energy la

- Sea is flavor symmetric since splitting is flavor independent
- Unfortunately this picture doesn't agree with observations

Evidence for a turbulent sea (I). Parton distributions for high energy collisions

M. Glück, E. Reya, A. Vogt

Institut für Physik, Universität Dortmund, Postfach 500500, W-4600 Dortmund 50, Federal Republic of Germany

Received 10 June 1991

Abstract. Recent data from deep inelastic scattering experiments at x > 10^{-2} are used to fix the parton distributions down to x = 10^{-4} and $Q^2 = 0.3 \text{ GeV}^2$. The predicted extrapolations are uniquely determined by the requirement of a valence-like structure of all parton distributions at some low resolution scale

Gluck, Reya, Vogt, ZPC 53, 127 (1992)

U.S. Department of Energy laborat managed by UChicago Argonne, L

Evidence for a turbulent sea (II)

Gottfried Sum Rule (NMC)

21 June 2016

Evidence for a turbulent sea (III)

Argonne National Laboratory is a U.S. Department of Energy laboratory managed by UChicago Argonne, LLC

Evidence for a turbulent sea (IIIb)

• Drell-Yan NA51 at CERN $\bar{d} > \bar{u}$ at x = 0.18E866/NuSea (Fermilab)

 $\bar{d}(x)/\bar{u}(x)$ for $0.015 \le x \le 0.35$

- Knowledge of sea dist. are data driven
- Sea quark distributions are difficult for Lattice QCD*

*but significant progress is being made by the lattice community

Paul E Reimer,

21 June 2016

Paul E Reimer, CIPANP

ENERGY U.S. Department of Energy laboratory managed by UChicago Argonne, LLC

Drell-Yan Cross Section—Next-to-leading order α_s

Responsible for up to 50% of the cross section

Paul E Reimer, CIPANP

SeaQuest Experiment

ENERGY Argonne National Laboratory is a U.S. Department of Energy laboratory managed by UChicago Argonne, LLC.

Paul E Reimer, CIPANP

E906/SeaQuest Status

- Data with ¹H, ²H, C, Fe and W targets
- Acceptance from below J/ ψ to ~8 GeV
- Completed data recording summer 2017
- Recorded 1.8 × 10¹⁸ "live" protons on target
 1/3 of requested integrated luminosity

1 June 2018

Data From FY2014—target-dump separation

- Entire beam interacts upstream of first SeaQuest Spectrometer tracking chamber
- Spatial resolution poor along beam axis
- Resolve target vs beam dump

1 June 2018

Data From FY2014

SeaQuest Cross Section Ratio

SeaQuest Leading Order dbar/ubar

SeaQuest Cross Section Ratio

Plot based on first 0.3×10^{18} protons xSeaQuest has recorded 1.8×10^{18} protons Acceptance improvements so later protons are "worth" more

U.S. DEPARTMENT OF ENERGY U.S. Department of Energy laboratory managed by UChicago Argonne, LLC Paul E Reimer, CIPANP

SeaQuest Seaquark EMC Effect

Parton distributions in nuclei are different than in nucleons!!

- No antiquark enhancement apparent.
- 10% of anticipated statistical precision

C/D

1.3

1.2

1.1

1.0

0.9

0.8

0.0

0.1

 $R\left(\frac{A}{D}\right)$

Increased detector acceptance at large-x to come.

Fe/D

Preview Systematic:

0.2

 $\sim 1\%$ LD2 Comp., $\sim 6\%$ rate dep.

0.3

 x_T

0.3

0.4

0.5

0.0

0.1

0.2

0.3 0.4 0.5 Argonne 22

SeaQuest Seaquark EMC Effect

Parton distributions in nuclei are different than in nucleons!!

- No antiquark enhancement apparent.
- 10% of anticipated statistical precision

ENERGY St. Department of Energy Inducator

Increased detector acceptance at large-x to come.

Paul E Reimer, CIPANP

01

0.2

Drell-Yan Future: Polarized Target, Beam

- E-1039: Correlation between unpolarized quarks and nucleon transverse polarization
- Do sea quarks have orbital angular momentum?
 - Non-zero Sivers distribution ⇒ non-zero quark orbital momentum:
- Requires Transversely polarized target
- Status
 - Funding from DOE/Nuclear Physics with support from HEP
 - Installation beginning!!
 - Commissioning fall 2018
 - Production data FY19-20.

Projected Statistical Precision with a Polarized Target

TAKE AWAY THOUGHTS THE PROTON'S SEA IS TURBULENT

- Drell-Yan can select sea quark distributions
- SeaQuest extends the reach of previous sea quark measurements to larger

 Drell-Yan Sivers Function and sea quark orbital angular momentum will be probed with polarized target

 $f_{1T} =$

I÷

93