Recent Results on Heavy Quark Production in High Energy Nucleus-Nucleus Collisions

Xin Dong Lawrence Berkeley National Laboratory

May 29-June 2, 2018

CIPANP 2018, Palms Spring X. Dong

Quark-Gluon Plasma and Early Universe

Lattice QCD predicts a new state of QCD matter at high temperature/density

 quark-gluon plasma (quarks and gluons not confined within hadrons)

• Expected to be the state of early universe a few μ s after Big-Bang

High Energy Nucleus-Nucleus Collisions

3

RHIC Discoveries

<u>"Jet Quenching"</u>

- Significant suppression in particle yield at high $p_{\rm T}$ in central heavy ion collisions

"Partonic Collectivity"

Strong collective flow, even for multi-strange hadrons (φ, Ω)
Flow driven by Number-of-Constituent-Quark (NCQ) in hadrons

- Re-affirmed by LHC measurements

X. Dong

Quantitative Measure of QGP

May 29-June 2, 2018

Uniqueness of Heavy Quarks in QCD

May 29-June 2, 2018

CIPANP 2018, Palms Spring

Brownian Motion and Einstein's Theory

 Über die von der molekularkinetischen Theorie der Wärme geforderte Bewegung von in ruhenden Efüssigkeiten suspendierten Teilchen;
 von A. Einstein.

In dieser Arbeit soll gezeigt werden, daß nach der molekularkinetischen Theorie der Wärme in Filasigkeiten suspendierte Körper von mikroskopisch sichtbarer Größe infolge der Molekularbewegung der Wärme Bewegungen von solcher Größe ausführen müssen, daß diese Böwegungen leicht mit dem Mikroskop nachgewiesen werden können. Es ist möglich, daß die hier zu behandelnden Bewegungen mit der sogenannten "Brown schen Molekularbewegung" identisch sind; die mir erreichbaren Angaben über letztere sind jedoch so ungenau, daß ich mir hierüber kein Urteil bildon konnte.

Wenn sich die hier zu behaudelnde Bewegung samt den für sie zu erwartenden Gesetzmäßigkeiten wirklich beobachten läßt, so ist die klassische Thermodynamik sehon für mitroskopisch unterscheidbare Räume nicht mehr als genau gültig anzusehen und es ist dann eine exakte Bestimmung der wahren Atomgröße möglich. Erwises sich umgekohrt die Voraussage dieser Bewegung als unzutreffend, so wäre damit ein schwerwiegendes Argument gegen die molekularkinetische Auffassung der Wärme gegeben.

§ 1. Über den suspendierten Teilchen suzuschreibenden osmotischen Druck.

Im Teilvolumen F^* einer Flüssigkeit vom Gesamtvolumen Fseien z-Gramm-Moleküle eines Nichtelektrolyten gelöst. Ist das Volumen F^* durch eine für das Lösungsmitch, nicht aber für die gelöste Substanz durchlässige Wand vom reinen Lösungs-

Albert Einstein, 1905

- Brownian Motion jittery motion of pollen grains in water
- Einstein's 1905 paper mathematically explained the Brownian motion

$$\frac{\partial \rho}{\partial t} = D \frac{\partial^2 \rho}{\partial x^2} \qquad \left\langle x^2(t) \right\rangle - \left\langle x^2(0) \right\rangle \sim Dt$$
$$D - \text{diffusion coefficient}$$

• Validated by Jean Perrin's experiment in 1909 (awarded Nobel Prize in 1926)

CIPANP 2018, Palms Spring

Physics Goals of Heavy Quark Measurements in HIC

- Mass dependence of parton energy loss
- Quantify QGP transport parameter

- $\Delta E_g > \Delta E_q > \Delta E_c > \Delta E_b$ - HQ spatial diffusion coefficient, **D**_s

Experimental Methods

Hadron	Abundance (fragmentation)	C τ (μ m)
D^0	56%	123
D+	24%	312
D _s	10%	150
$\Lambda_{\sf c}$	10%	60
B+	40%	491
B ⁰	40%	456

1) Secondary vertex reconstruction e.g. $D^0 \rightarrow K\pi$, $B \rightarrow J/\psi K$

2) Inclusive impact parameter method e.g. *D/B->e, B->D, B->J/ψ*...

Precision silicon vertex tracker is crucial, particularly in high multiplicity heavy-ion collisions

May 29-June 2, 2018

CIPANP 2018, Palms Spring

Key Instruments – Pixel Silicon Detector

	ALICE	ATLAS	CMS	LHCb	PHENIX	STAR
Sensor tech.	Hybrid	Hybrid	Hybrid	Hybrid	Hybrid	MAPS
Pitch size (µm²)	50x425	50x400	100x150	200x200	50x425	20x20
Radius of first layer (cm)	3.9	5.1	4.4	N/A	2.5	2.8
Thickness of first layer	1%X ₀	~1%X ₀	~1%X ₀	~1%X ₀	1%X ₀	0.4%X ₀

STAR Pixel – first application of MAPS technology in collider experiments (MAPS - Monolithic Active Pixel Sensor)
 Next generation MAPS planed for future experiments:

ALICE ITS upgrade, sPHENIX MVTX

- to address the QGP medium properties

Also for CBM, EIC detector R&D

MAPS pixel cross-section (not to scale))

Properties:

- Standard commercial CMOS technology
- Sensor and signal processing are integrated in the same silicon wafer
- Signal is created in the low-doped epitaxial layer (typically ~10-15 µm) → MIP signal is limited to <1000 electrons
- Charge collection is mainly through thermal diffusion (~100 ns), reflective boundaries at p-well and substrate

MAPS and competition	MAPS	Hybrid Pixel	CCD
Granularity	+	-	+
Small material budget	+	-	+
Readout speed	+	++	-
Radiation tolerance	+	++	-

MAPS - particularly chosen for measuring HF hadron decays in heavy ion collisions

A Heavy-Ion Event Display

Pixel Detector Performance

May 29-June 2, 2018

CIPANP 2018, Palms Spring

X. Dong

13

Charm Production in p+p Collisions

p+A to Constrain Cold Nuclear Matter Effects

ALICE, PRC 94 (2016) 054908, QM18; LHCb, JHEP 10 (2017) 090

pQCD+nPDF / models with CNM effects describe R_{pPb} at mid-rapidity and F/B asymmetry reasonably well.

Charm Hadron R_{AA} – Energy Loss in Hot QGP

STAR PRL 113 (2014) 142301, QM18; CMS-HIN-16-001

R_{AA} (D) ~ R_{AA}(h) at p_T > 5 GeV/c in central A+A collisions
 strong interactions between charm and medium

CIPANP 2018, Palms Spring

Charm Hadron v₂ at RHIC

- Mass ordering at $p_T < 2$ GeV/c (hydrodynamic behavior)
- $v_2(D)$ follows the (m_T-m_0) NCQ scaling as light hadrons below 1 GeV/c²

Evidence of charm quarks flowing the same with the medium

Charm Hadron v₂ at LHC

CMS-HIN-16-007; ALICE, 1804.09083

ALICE 2.76 TeV data: JHEP 06 (2015) 190

• Significant D-meson v₂ at 5.02 TeV Pb+Pb collisions

• $D^0 v_2$ follows the same trend as light hadrons at LHC

CIPANP 2018, Palms Spring

Charm Quark Hadronization – Λ_c

May 29-June 2, 2018

Λ_{c} Enhancement in Heavy Ion Collisions

Ko model : Y. Oh, et.al. PRC 79 (2009) 044905; Greco model : S.Plumari, et. al. EPJC 78 (2018) 348

- Significant enhancement in Λ_c /D compared to PYTHIA/fragmentation baseline
- The Λ_c/D^0 ratio is compatible with light flavor baryon-to-meson ratios
- Consistent with coalescence + thermalized charm quarks

Summary - Charm

Charm quarks very strongly coupled with QGP *Evidence of charm quark flowing with the QGP*

Towards Extraction of Heavy Quark Diffusion Coefficient

HQ propagation in QM & URHIC...

Rapid developments among theorists to understand trivial/nontrivial differences between models/groups

- Heavy Quark Working Group
- EMMI Rapid Response Tasking Force R. Rapp et al. 1803.03824

CIPANP 2018, Palms Spring

X. Dong

22

Bayesian Analysis to Extract HQ Diffusion Coefficient

Open question: Charm heavy enough ? (as compared to medium interactions) -> Go Heavier !!!

B-meson and *b*-jet at high p_T

CMS, PRL 113 (2014) 132301, PRL 119 (2017) 152301

- $R_{AA}(b\text{-jet}) \sim R_{AA}(\text{incl. jet})$ at $p_T > 70 \text{ GeV/c}$
- $R_{AA}(B+) \sim R_{AA}(D) \sim R_{AA}(h)$ at $p_T > 10$ GeV/c

Mass hierarchy? -> Going to lower p_T

Bottom Suppression at Low p_T at LHC

Bottom Measurements at RHIC

Summary - Bottom

Evidence of less energy loss of bottom in the QGP - mass hierarchy of parton energy loss !

Precision low p_T bottom measurements (R_{AA}, v₂)
to quantify medium transport parameter

Future – Precision Open Bottom Measurements

Precision bottom (B-meson and *b*-jet) measurements

next generation fast MAPS detector with high luminosity heavy ion runs

- systematic investigation of mass dependence of parton energy loss
- precision determination of heavy quark diffusion coefficient

ITS upgrade at ALICE, MVTX@sPHENIX (~ 2020+)

CIPANP 2018, Palms Spring

"Cutting edge experimental research is largely defined by new technology" - C.N. Yang, 2017

Backups

Quark-Gluon Plasma – "Perfect Liquid"

State-of-the-art viscous hydrodynamic simulations

Charm Production in p+p Collisions

D_s Enhancement in Heavy Ion Collisions

• D_s/D^0 enhancement in mid-central Au+Au and Pb+Pb collisions w.r.t fragmentation baseline or p+p measurement

- Coalescence hadronization
- Coalescence hadronization A. Andronic et al., PLB 571 (2003) 36 - Statistical Hadronization Model predicts D_s/D^0 ratio ~ 0.35-0.40 (central)

Bottom Production in p+p Collisions

Relativistic Heavy Ion Collider (RHIC)

Successfully operated for 17 years since 2000

• Beam species from proton to Uranium,

7.7 – 200 GeV (ions) / 510 GeV (polarized protons)

Heavy Flavor Tracker for STAR

Heavy Flavor Tracker for STAR

HFT consists of 3 sub-detector systems inside the STAR Inner Field

Cage

Detector	Radius (cm)	Hit Resolution R/φ - Z (μm - μm)	Thickness
SSD	22	30 / 860	1% X ₀
IST	14	170 / 1800	1.32 %X ₀
PIXEL	8	6.2 / 6.2	~0.52 %X ₀
	2.8	6.2 / 6.2	~0.39% X ₀

SSD existing single layer detector, double side strips (electronic upgrade)

IST one layer of silicon strips along beam direction, guiding tracks from the SSD through PIXEL detector - proven pad technology

> **PIXEL** double layers, Monolithic Active Pixel Sensor (MAPS), 20.7x20.7 μ m², 0.4%X₀ thick per layer, air cooled

- first application of MAPS technology at a collider experiment ~1mm SSD ~300µm IST ~250µm PXL < 30µm vertex May 29-June 2, 2018 CIPANP 2018, Palms Spring X. Dong

37

Charm Hadron v₂ Compared to Models

- 3D viscous hydro model calculations describe the D⁰ v₂ at p_T < 3-4 GeV/c
 Indication of charm quark thermalization in the QGP
- Data precision good enough to constrain model calculations

CIPANP 2018, Palms Spring

R_{AA} and v₂ Compared to Models

CIPANP 2018, Palms Spring

39

Charm Hadron v₂ Compared to Models

- 3D viscous hydro model calculations describe the D⁰ v₂ at p_T < 3-4 GeV/c
 Indication of charm quark thermalization in the QGP
- Data precision good enough to constrain model calculations

Charm Flowing - Next Steps

• How do charm quarks reach thermal equilibrium?

- Correlation with light hadrons
- Charm quark collectivity in small system

Bottom Electron R_{AA} at RHIC

PHENIX, PRC 93 (2016) 034904

 R_{AA}(e_B) < R_{AA}(e_D) at 3 – 5 GeV/c in central Au+Au 200 GeV collisions mass hierarchy of parton energy loss

Bottom Jet Suppression at LHC

R_{AA} of inclusive b-jets at p_T>80 GeV/c comparable to that of light jets
b-dijet <x_J> no significant difference between light and heavy jets vs. centrality

CIPANP 2018, Palms Spring

B-meson and non-prompt J/ ψ at high p_T

Heavy Quark Diffusion Coefficient in QGP

		Temperature (K)	D _s (cm²/s)
	Oxygen (g) in air (g)	298	0.176
	Air in water (I)	298	2.00 x 10 ⁻⁵
	Hydrogen in iron (s)	283	1.66 x 10 ⁻⁹
	HQ in QGP	(1.8-3.6) x 10 ¹²	(100-600) x 10⁻⁵
_	May 29-June 2, 2018	CIPANP 2018, Palms	Spring X. Dong

Uniqueness at RHIC

Uniqueness at RHIC

- dominated by pair creation, clean interpretation for experimental results

T. Sjostrand, EPJC17 (2000) 137

Bottom Suppression at Low p_T at LHC

CIPANP 2018, Palms Spring

$D^0 R_{AA}$ and v_2 Compared to Models at LHC

 Charm mesons at LHC show significant suppression at high p_T , $R_{AA}(D) \sim R_{AA}(h)$ significant flow at low-intermediate p_T , $v_2(D) \sim v_2(h)$ vs. $m_T - m_0$ Data precision good enough to constrain models

CIPANP 2018, Palms Spring

Open bottom production over a wide range of momentumMass/Flavor dependence of parton energy lossCleanest probe to quantify medium transport properties – e.g. D_{HQ} Total bottom yield for precision interpretation of Upsilon suppression

Das et al., PRC 90 (2014) 044901

X. Dong

Is charm heavy enough? Sizable correction to the Langevin approach for charm - may limit the precision in determining **D**_{HQ}